- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
图像处理例子论文
基于MATLAB的图像处理考试大作业
???????
?
学生姓名:龙先生????
学????号?? ??????
专业???? :信息与计算科学
班级?? : 2010级1班
?? ??????
提交日期?????20013年11月
?
摘要:
数字图像图像分析等图像处理。
实验目的:学会用matlab对图像进行处理,
关键词:MATLAB,数字图像处理图像增强直方图均衡化LOG算子检测边缘线性平滑滤波器图像增强X1=imread(pout.tif);
figure,imshow(X1)
f0=0;g0=0;
f1=70;g1=30;
f2=180;g2=230;
f3=255;g3=255;
r1=(g1-g0)/(f1-f0);
b1=g0-r1*f0;
r2=(g2-g1)/(f2-f1);
b2=g1-r2*f1;
r3=(g3-g2)/(f3-f2);
b3=g2-r3*f2;
[m,n]=size(X1);
X2=double(X1);
for i=1:m
for j=1:n
f=X2(i,j);
g(i,j)=0;
if(f=0)(f=f1)
g(i,j)=r1*f+b1;
elseif (f=f1)(f=f2)
g(i,j)=r2*f+b2;
elseif (f=f2)(f=f3)
g(i,j)=r3*f+b3;
end
end
end
figure,imshow(mat2gray(g))
图像处理图示(如图4-2和图4-3)
图4-2 原图
图4-3增强对比度所得图像
二,图像求反.
对图像求反是将原来的灰度值翻转,简单的说就是使黑变白,使白变黑。
普通的黑白底片和照片就是这样的关系。具体的变换就是将图像中每个像素的灰度值根据变换曲线进行映射。
MATLAB代码所示:
X1=imread(pout.tif);
f1=200;
g1=256;
k=g1/f1;
[m,n]=size(X1);
X2=double(X1);
for i=1:m
for j=1:n
f=X2(i,j);
g(i,j)=0;
if(f=0)(f=f1)
g(i,j)=g1-k*f;
else
g(i,j)=0;
end
end
end
figure,imshow(mat2gray(g))
图像处理图如图4-4所示:
图4-4 图像求反后
三,直方图均衡化
LOG算子检测边缘数码管图像的目标和背景分离不明显,直方图分布较复杂。针对该问题,提出基于拉普拉斯高斯(Laplacian of Gaussian,LoG)算子边缘检测的全局二值化方法对其进行处理,该方法通过提取图像边缘部份的像素灰度获得图像二值化的阈值。处理结果表明,与传统的几种方法相比,该方法能够快速选取良好的二值化阈值,较好地区分目标和背景,在相当大模板宽度内图像二值化的结果都令人满意。
线性平滑滤波器平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。用MATLAB实现领域平均法抑制噪声程序:
II
文档评论(0)