基于dsp的目标跟踪算法的分析与实现word格式论文.docxVIP

基于dsp的目标跟踪算法的分析与实现word格式论文.docx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于dsp的目标跟踪算法的分析与实现word格式论文

Visual tracking is always being an active research topic in Information technology, because of its wide application in the automatic object recognition, intelligent surveillance, vehicle navigation, vehicle navigation, human computer interaction, and other disciplines. Photoelectric imaging visual tracking for over-ground surveillance and tracking, used into target automatic tracking and ranging in the vehicular photoelectric platform.This thesis focuses on visual tracking algorithm based on DSP. To overcome the presences of noise,occlusion, background clutter and illumination changes in visual tracking algorithm, it is need to develop a robust visual tracking framework. The particle filter framework built in thiswork casts the tracking problem as finding sparse representation of candidate target. And then, proposing a solution to settle up the sample impoverishment problem brought from the resampling method in the particle filter framework. Here are researching contents in this work:Bring up the genetic bounded resampling algorithm. Under the condition of no sacrificing the resampling accuracy, use the bounded samples resampling to reduce the time-consuming calculation of the sampling values. Then, use genetic algorithms to increase the diversity of the sample in order to reduce sample degradation problem, brought from resampling in the particle filter framework.Detect occlusion. Using dynamic template to capture surface changes, to stop the unsuited tracking results from adding into the template set, it detected the occlusion before the results added into the set. And then control the updating of templates.Display the tracking results visually. Build the DSP platform, using the CCSLink tools to combine the DSP and MATLAB in order to perform the data transmission. The DSP chip call tracking algorithm and return the results into MATLAB workspace. Then the tracking results are turned into intuitive picture format through the capability of powerful data processing in

您可能关注的文档

文档评论(0)

peili2018 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档