Hyperspectral image processing using locally linear embedding精编.pdf

Hyperspectral image processing using locally linear embedding精编.pdf

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Hyperspectral image processing using locally linear embedding精编

University of Pennsylvania Scholarly Commons Departmental Papers (BE) Department of Bioengineering arch 2003 Hyperspectral Image Processing Using Locally Linear Embedding David H. Kim University of P ennsylvania Leif H. Finkel University of P ennsylvania, leif@ Follow this and additional works at : /be_papers Recommended Citation Kim, D. H., Finkel, L. H. (2003). Hyperspectral Image Processing Using Locally Linear Embedding. Retrieved from /be_papers/8 Copyright 2003 IEEE. Reprinted from Proceedings of the 1st International IEEE EMBS Conference on Neural Eng ineering 2003, pages 316-319. Publisher URL : /xpl/tocresult.jsp ?isNumber=26900page=5 This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvanias products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This paper is posted at ScholarlyCommons. /be_papers/8 For more information, please contact repository@pobox .. Hyperspectral Image Processing Using Locally Linear Embedding Abstract We describe a method of processing hyperspectral images of natural scenes that uses a combination of k- means clustering and locally linear embedding (LLE). The primary goal is to assist anomaly detection by preserving spectral uniqueness among the pixels. In order to reduce redundancy among the p

您可能关注的文档

文档评论(0)

bodkd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档