variable selection and estimation in generalized linear models with the seamless {it l}_{{rm 0}} penalty精品.pdfVIP
- 1、本文档共25页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
variable selection and estimation in generalized linear models with the seamless {it l}_{{rm 0}} penalty精品
The Canadian Journal of Statistics 745
Vol. 40, No. 4, 2012, Pages 745–769
La revue canadienne de statistique
Variable selection and estimation in
generalized linear models with the seamless
L0 penalty
1 2 3
Zilin LI , Sijian WANG and Xihong LIN *
1Department of Mathematics, Tsinghua University, Beijing, China
2Department of Biostatistics Medical Informatics and Department of Statistics, University of Wisconsin,
Madison, WI, USA
3Department of Biostatistics, Harvard University, Boston, MA, USA
Key words and phrases: BIC; consistency; coordinate descent algorithm; model selection; oracle property;
penalized likelihood methods; SELO penalty; tuning parameter selection.
MSC 2010: Primary 62J07; secondary 62J12.
Abstract: In this paper, we propose variable selection and estimation in generalized linear models using
the seamless L0 (SELO) penalized likelihood approach. The SELO penalty is a smooth function that very
closely resembles the discontinuous L0 penalty. We develop an efficient algorithm to fit the model, and show
that the SELO-GLM procedure has the oracle property in the presence of a diverging number of variables.
We propose a Bayesian information criterion (BIC) to select the tuning parameter. We show that under
some regularity conditions, the proposed SELO-GLM/BIC procedure consistently selects the true model.
We perform simulation studies to evaluate the finite sample performance of the proposed methods. Our
simulation studies show that the proposed SELO-GLM procedure has a better finite sample performance
than several existing methods, especially when the number of variables is large and the signals are weak.
We apply the SELO-GLM to analyze a breast cancer genetic dataset to identify the SNPs that are associated
with breast cancer risk. The Canadian Journal of Statistic
您可能关注的文档
- Towards New Public Management in Greek Public Organizations Leadership vs. Management, and the Path to Implementation精品.pdf
- TR200手持式粗糙度仪是时代集团公司开发的又一个新产品.pdf
- tracy-4 da-1988_A discourse analysis of four discourse studies精品.pdf
- Trades in commodities, financial assets, and currencies A triangle of arbitrage, hedging and speculative designs精品.pdf
- Translating Others (Volume 1)-[Theo Hermans]精品.pdf
- Transition metal exchanged β zeolites Characterization of the metal state and catalytic application in the methanol conversion to hydrocarbons.pdf
- True Gentleman Experience Guidebook - Sigma Alpha Epsilon精品.pdf
- TS16949必威体育精装版版SGS内审员培训专业指导.pdf
- Tutorial for Proteomics Data Submission - Molecular & Cellular 蛋白质组学数据提交-分子与细胞的教程;.pdf
- Tungstophosphoric acid immobilized on ammonium Y and ZSM5 zeolites Synthesis, characterization and catalytic evaluation精品.pdf
文档评论(0)