- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
使用随钻录井的资料计算地层静温
使用随钻录井资料计算地层静温,并给地层温度梯度一个初值,从热力学及流体力学等有关方程出发,经过推演得到井壁上温度随深度变化以及地层温度分布的数学模型用于计算泥浆出口温度。将此计算值与实测的泥浆出口温度值比较,根据比较结果再修正地层温度梯度,如此反复,直至计算值与实测的泥浆出口温度值相等,从而得到钻头所在的初始地层静温。由于钻井过程中泥浆、岩石及其温度场间是相互作用、相互影响的,这为研究热—流—固耦合过程的理论与应用提供了一种新的方法。 主题词 钻井 温度梯度 随钻录井 钻井液 热力学 井身结构 钻井时,由于地层温度梯度的影响,钻井液通过与地层交换热量,使得地层出现温度分布不均现象,这种分布使钻井液温度有所升高,导致泥浆入口与进口温度有所不同。如何通过入口与进口泥浆温度差来反算地层的静温是录井工作中一个很有意义的研究课题。 地层静温对石油的勘探与开发非常重要(详见),目前一般使用测井的温度数据,采用Horner 半对数方法得到[1 ,2 ,3], 这种方法不仅费时, 而且很多情况下Horner 半对数图上不出现直线段,得到的地层静温也就不准确。本文利用录井数据,将钻井液视为液固两相非牛顿流体,并考虑流体的自然对流传热、流体与固壁之间的表面换热及岩石的热传导[4 ,5],通过数值计算方法得到井底静温,不需要特殊的工艺。由泥浆入口温度和出口温度计算井底静温的原理是:在所有热力学参数、泥浆有关参数及井身结构参数等已知的情况下,给一个地层温度梯度,可通过有关计算得到泥浆出口温度,将这个计算温度与实测的泥浆出口温度进行对比,如果两者不相符合,则改变地层温度梯度后再进行计算。如此反复,直至计算的出口温度与实测的泥浆出口温度一致为止,此时的地层温度梯度可被用来计算该井深下的地层静温。因此,研究地层静温的关键是从热力学及流体力学有关方程出发,通过数值差分或其他方法得到井壁上的温度随深度的变化及地层的温度分布。 一、数学模型的建立 (1) 流体的视粘度(有效粘度) :钻井液可认为是不可压流体,但由于泥浆的粘稠性,不可能用牛顿流体来处理,必须采用非牛顿流体来处理,对非牛顿流体这里研究的是宾厄姆流体和幂律流体。如高固相泥浆及加重泥浆,其流变特征近似宾厄姆流体,低固相泥浆可加入稀释剂,其流变特征近似幂律流体。 对于幂律流体,其有效粘性系数μeff 可定义如下: (1) 式中:M 幂律流体的粘性系数(MPa) , n 幂律流体指数系数,γ剪切应变力(L/ s) 。对于流体速度为v ,半径为R 的圆管,剪切应变力γ可写成: (2) 对于内外径为R1、R2 的环形管道其剪切应变力γ可写成: (3) 对于宾厄姆流体,有效粘度系数μeff 定义为: (4) 式中:μp为塑性粘度mPa·s),τ0 为屈服点( Pa) 。流体体积流量为Q ,半径为R 的圆管,剪切应变力γ可写成: (5) 对于内、外径分别为R1 、R2 的环形管道γ可写成: (6) (2) 流体的对流过程:由于泥浆是液固混合物,那么密度为ρ的泥浆中固相份额为S F = (ρ-1000) /ρ, 泥浆的热容量C = 4190.5-3256.1S F(J /kg ·K) ,泥浆的导热系数K = 0.69+16.61S F(W/m ·K) 。,泥浆与固壁之间的传热称为对流传热,井筒内的对流传热由表面对流系数h 来决定,对直径为D 的管道,表面对流系数h =其中Nusselt 数NNu 可用Reynold 数NRe 与Prandlt 数Npr来表示,实验可得出三个无量纲数之间关系: 式中:Reynol数Prandlt 数沿程摩擦系数可表示如下: (8) (3) 流体的自然对流传热:环空中的流体自然对流使流体沿径向的热导系数增大,由实验可得出环状空间中自然对流的有效导热系数值Keff (9) 式中为膨胀系数数, 1/ K;μ为流体粘度,Pa·s;ΔT为环状空间径向温度差,K。这样流体的自然对流传热就等效于导热。 (4),联立求解能量方程、动量方程、连续方程和状态方程十分困难。经过大量数值实验,如果在能量方程中略去了与其它方程的耦合项,则精度仅降低5 % ,但可以独立求解相关方程。为此,对能量方程做了简化,略去了与其它方程耦合项,从而可以独立求解相关方程,以确定井壁及地层的温度分布。从钻铤到地层可能要经过多层套管及套管的水泥层,它们之间的传热是较复杂的,必须要考虑导热、对流(包括表面对流和自然对流) ,但辐射项可以忽略。这样热传导差分形式的方程为:
文档评论(0)