Spatial and space–time clustering of mortality due to malaria in rural Tanzania evidence from Ifakara and Rufiji Health and Demographic Surveillance System sites.pdfVIP

Spatial and space–time clustering of mortality due to malaria in rural Tanzania evidence from Ifakara and Rufiji Health and Demographic Surveillance System sites.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Spatial and space–time clustering of mortality due to malaria in rural Tanzania evidence from Ifakara and Rufiji Health and Demographic Surveillance System sites

Selemani et al. Malar J DOI 10.1186/s12936-015-0905-y RESEARCH Open Access Spatial and space–time clustering of mortality due to malaria in rural Tanzania: evidence from Ifakara and Ruiji Health and Demographic Surveillance System sites 1,2* 2 2 2 3 4 Majige Selemani , Sigilbert Mrema , Amri Shamte , Josephine Shabani , Michael J. Mahande , Karen Yeates , 1 1 2 Amina S. Msengwa , Maurice C. Y. Mbago and Angelina M. Lutambi Abstract Background: Although, malaria control interventions are widely implemented to eliminate malaria disease, malaria is still a public health problem in Tanzania. Understanding the risk factors, spatial and space–time clustering for malaria deaths is essential for targeting malaria interventions and efective control measures. In this study, spatial methods were used to identify local malaria mortality clustering using verbal autopsy data. Methods: The analysis used longitudinal data collected in Ruiji and Ifakara Health Demographic Surveillance System (HDSS) sites for the period 1999–2011 and 2002–2012, respectively. Two models were used. The irst was a non-spatial model where logistic regression was used to determine a household’s characteristic or an individual’s risk of malaria deaths. The second was a spatial Poisson model applied to estimate spatial clustering of malaria mortality using ™ SaTScan , with age as a covariate. ArcGIS Geographical Information System software was used to map the estimates obtained to show clustering and the variations related to malaria mortality. Results: A total of 11,462 deaths in 33 villages and 9328 deaths in

您可能关注的文档

文档评论(0)

seunk + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档