- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
一个解决大数据集问题的核主成分分析算法-复旦大学
∗ + ,, (, 200433) An efficient Kernel Principal Component Analysis Algorithm for large-scale data set * + Shi Weiya, Guo Yue-Fei , Xue Xiangyang (Department of Computer Science and Technology, Fudan University, Shanghai 200433, China) + Corresponding author: Phn: +86-21 Fax: +86-21 E-mail: yfguo@, Abstract: Kernel principal component analysis (KPCA) is a popular nonlinear feature extraction method in the field of machine learning. It uses eigen-decomposition technique to extract the principal components. But the method is infeasible for large-scale data set because of the store and computational problem. To overcome these disadvantages, a new covariance-free method of computing kernel principal components is proposed. First, a matrix, called Gram-power matrix, is constructed using the original Gram matrix. It is proven by the theorem of linear algebra that the eigenvectors of newly constructed matrix are the same as the ones of the Gram matrix. Therefore, we can treat each column of the Gram matrix as the input sample for the covariance-free algorithm. Thus, the kernel principle components can be iteratively computed without the eigen-decomposition. The space complexity of proposed method is only , the time complexity is reduced to . The effectiveness of proposed method is validated from experimental results. More important, it still can be used even if traditional eigen-decomposition technique cannot be applied when faced with the extremely large-scale data set. Key words: KPCA; Gram matrix; large-scale data set; covariance-free; eigen-decomposition : GramGram-power GramGram
文档评论(0)