[管理学]Decision Analysis_Chapter 06.ppt

  1. 1、本文档共56页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
[管理学]Decision Analysis_Chapter 06

? 2007 South-Western College Publishing Spreadsheet Modeling Decision Analysis A Practical Introduction to Management Science 5th edition Cliff T. Ragsdale Integer Linear Programming Introduction When one or more variables in an LP problem must assume an integer value we have an Integer Linear Programming (ILP) problem. ILPs occur frequently… Scheduling workers Manufacturing airplanes Integer variables also allow us to build more accurate models for a number of common business problems. Integrality Conditions Relaxation Original ILP MAX: 2X1 + 3X2 S.T.: X1 + 3X2 = 8.25 2.5X1 + X2 = 8.75 X1, X2 = 0 X1, X2 must be integers LP Relaxation MAX: 2X1 + 3X2 S.T.: X1 + 3X2 = 8.25 2.5X1 + X2 = 8.75 X1, X2 = 0 Integer Feasible vs. LP Feasible Region Solving ILP Problems When solving an LP relaxation, sometimes you “get lucky” and obtain an integer feasible solution. This was the case in the original Blue Ridge Hot Tubs problem in earlier chapters. But what if we reduce the amount of labor available to 1520 hours and the amount of tubing to 2650 feet? See file Fig6-2.xls Bounds The optimal solution to an LP relaxation of an ILP problem gives us a bound on the optimal objective function value. For maximization problems, the optimal relaxed objective function values is an upper bound on the optimal integer value. For minimization problems, the optimal relaxed objective function values is a lower bound on the optimal integer value. Rounding It is tempting to simply round a fractional solution to the closest integer solution. In general, this does not work reliably: The rounded solution may be infeasible. The rounded solution may be suboptimal. How Rounding Down Can Result in an Infeasible Solution Branch-and-Bound The Branch-and-Bound (BB) algorithm can be used to solve ILP problems. Requires the solution of a series of LP problems termed “candidate problems”. Theoretically, this can solve any ILP. Practically, it often takes LOTS of computational effort

文档评论(0)

qiwqpu54 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档