神经网络课件神经网络课445教案3章节.pptVIP

神经网络课件神经网络课445教案3章节.ppt

  1. 1、本文档共94页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
F. Input Training Neural Network The aim of training IT-NN is to minimize the following objective function: The steepest descent direction for training network is Effectiveness of IT-NN Nonlinear System Modeling with IT-NN RBF-NN Combining IT-NN with RBF Results We can see that the IT-NN with 8 nonlinear PCs will be the best choice. Fewer PCs (7, 6 and 5) cause information lost, and more PCs (10 and 9) increase the input nodes of RBF. A classification network’s predictions moving from the class I decision region (y=[1,0,0]) to the II decision (y=[0,1,0]). The two most commonly used network architectures for classification problems are the BP network and the RBF network. Illustrative example of fault diagnosis of a chemical reactor low conversion [1,0,0] low catalyst selectivity [0,1,0] catalyst sintering [0,0,1] Hidden layer reactor inlet temperature, 0F reactor inlet pressure, psia feed flow rate, 1b/min Next, we use a example to compare the BP network with the RBF network. In addition, we compare different transfer functions(e.g. sigmoid and hyperbolic tangent) and network training rules(e.g., delta rule and normalized cumulative delta rule, nc-delta). Using BP network Using BP network with delta-learning rule and the hyperbolic tangent transfer function and 5 nodes in the hidden layer Using the RBF network Comparison of the BP network and RBF network RBF networks perform better than BP networks for classification problems The RBF network’s RMS error approaches 0 as the number of nodes increases, while the BP network has a much larger RMS error of 0.037. BP network has a much more compact system representation than the RBF network, and has significantly lower RMS error for smaller networks(e.g. less than 5 nodes). The RBF network also trains faster requiring only 7000 iterations, versus 30000 for the BP network. A input-compression network … Out(1) Out(2) Out(m) subgroup (1) subnet 1 subgroup (n) … hidden layer 1 hidden layer 2 hidden layer 3 sub

您可能关注的文档

文档评论(0)

开心农场 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档