- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于视觉的车道线识别算法研究 优秀
毕业设计开题报告
题 目 基于视觉的车道线识别算法研究 学生姓名 学号 班级 电 班 专业 自动化 本课题的研究背景、国内外研究现状
随着城市化的发展和汽车的普及,交通环境日趋恶劣,交通拥挤加剧,交通事故频发,交通问题已经成为全球范围内人们普遍关注的社会问题。基于21世纪信息和计算机技术的高速发展,对待道路交通问题上,人们越来越倾向于依靠高科技寻求解决之路,世界各国都竞相开展智能车路系统和智能交通系统。随之,智能车辆导航的概念应运而生。在车辆视觉导航系统中最为关键的技术就是计算机视觉,计算机视觉的主要任务是完成道路的识别和跟踪。国内外许多学者对视觉导航进行了研究,有试图用双目或多目视觉完成导航任务,但面临的最大难点是不能较好的解决多目视觉系统的匹配问题且设备的成本较高;也有致力于单视目视觉技术的研究,但其方法缺少实时性;有尝试用三维重建的方法识别车道线,但由于其算法复杂度高难以满足实时性的要求。提高算法实时性和鲁棒性是目前急需解决的问题。
主要工作和所采用的方法、手段
根据对车道线识别算法的要求,研究几种算法的实时性和鲁棒性,并且用软件编程,仿真算法在道路图像中的检测效果,在众多算法的研究中,提出具有一定实时性和鲁棒性的识别算法。并用语言实现该算法,得到仿真结果。
在算法选定中,通过对比实验仿真的结果,可以看出用彩色通道提取法灰度化道路图像更能增强车道标记线的白色部分,融合沥青路面区域信息和车道线边缘信息获取车道线像素点,具有克服虚假边界的优点。最后,通过简化车道线模型,提出直线型车道线模型假设,并用hough变换及其改进算法和中值截距法提取车道线,分别通过MATLAB仿真得到实验结果。
预期达到的结果
通过对算法的研究,预期提出的最优算法在结构化道路的情况下能够检测出车道线,同时具有一定的实时性和鲁棒性 时 间 2009 年月日 hough变换及其改进算法和中值截距算法提取车道线,并用MATLAB对算法进行了仿真,得出了改进后的hough变换在车道线检测上具有较好的实时性和鲁棒性的结论。
关键词:图像预处理 彩色通道提取 区域生长 改进的hough变换
Abstract
Recent the research on Visual navigation systems have been developed in many countries. And a lane-detection system is an important component of many visual navigation systems. There has been active research on the lane-detection, because it closely relates to the safety of intelligent vehicles. In this thesis, the road positioning algorithms based on image are researched. At first, the current algorithms of image preprocessing are analyzed. By the specific requirements of the image processing in this thesis, the appropriate algorithm is chosen. For example, in order to get a greylevel image from a colour one, we introduced a method called getting from multicolor channel. As the result, the white line on the road image can be intensified stronger than the other ways. Then given the features of road line, a difference cyclostyle is defined to extract the edge. At the same, in order to improve the real-time performance of roads and anti-jamming capability, regional growth ways is introduced, through it we can chose a proper seed to get a regional road image. Then edge
文档评论(0)