sps非参数检验K多个独立样本检验(KruskalWallis检验)案例解析.docVIP

sps非参数检验K多个独立样本检验(KruskalWallis检验)案例解析.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
sps非参数检验K多个独立样本检验(KruskalWallis检验)案例解析

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析 2011-09-19 15:09   最近经常失眠,好痛苦啊! 大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验 ( Kruskal-Wallis检验)。       还是以SPSS教程为例: 假设:HO:   不同地区的儿童,身高分布是相同的           H1: 不同地区的儿童,身高分布是不同的 不同地区儿童身高样本数据如下所示:   提示:此样本数为4个(北京,上海,成都 ,广州)每个样本的样本量(观察数)都为5个 即:K=43   n=5,  此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验) 点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:   将“周岁儿童身高”变量拖入右侧“检验变量列表”内, 将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。 在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定   运行结果如下所示:   对结果进行分析如下: 1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900                                                              自由度为:3=k-1=4-1   下面来看看“秩和统计量”的计算过程,如下所示:   假设“秩和统计量”为 kw    那么:   其中:n+1/2   为全体样本的“秩平均”     Ri./ni   为第i个样本的秩平均    Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)   最后得到的公式为: 北京地区的“秩和”为:   秩平均*观察数(N) = 14.4*5=72 上海地区的“秩和”为:8.2*5=41 成都地区的“秩和”为:15.8*5=79 广州地区的“秩和”为:3.6*5=18 接近13.90  (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差) 2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003, 由于0.0030.01  所以得出结论:  H1: 不同地区的儿童,身高分布是不同的

文档评论(0)

ipad0d + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档