晶体震荡电路设计方案书与量测.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
晶体震荡电路设计方案书与量测

  在半導體製程技術的不斷提升下,產品體積大幅縮小,對功能與運算時脈卻更為要求,因此,本文以晶體震盪電路的設計與量測為題,探討相關特性與技術。 由於科技的日新月異,IC內部的複雜度與精確度較從前大幅提升,所需的時脈速度也越來越高,相對的要求時脈的穩定度與精確度也大幅提昇,如何利用晶體(Crystal)來設計與量測所需的振盪電路,已經成為一個重要的課題,以下我們分成幾個部分加以討論。 電氣特性 有鑑於其晶體電氣特性的複雜,我們針對晶體的電氣特性或是振盪電路有影響的部分,做一詳細討論,由於陶瓷/晶體的電器特性相似,所以也一併討論。 等效電路 陶瓷/晶體雖然在電器特性上有些差異,但是等效電路(圖一)是相同的,雖然陶瓷振動的諧振現像,可以視為與晶體相同,但主要差異在陶瓷振動的振盪頻率,電感L1較小,串聯電容C1相當大,此乃意味著串聯諧振頻率(fs)與並聯諧振頻率(fa)差(即fs-fa)會變得相當寬闊。     圖一 Crystal / Ceramic model   圖二 串聯共振 並聯共振 當晶體工作在串聯共振時,等效電路(圖二)阻抗在時是趨近於0,好的串聯共振線路設計,與負載電容無關,所以就不需要指定。 當晶體工作在並聯共振時,就像一電感在電路上,因此負載電容就非常重要,因為它可以決定振盪點的位置,如(圖三)所示。而且電抗改變,頻率也跟隨著改變,所以在不同頻率與間,由、L1決定,在並聯線路的設計上,負載電容是需要指定的,如(圖四)所示。 圖三 並聯共振頻率區域   圖四 並聯共振   AT-CUT與BT-CUT 典型的AT-CUT曲線是S形,BT-CUT曲線是拋物線形,如(圖五)所示;兩種Cut都對稱於室溫(25±3℃)。在相同的頻率下,BT-CUT的Quartz blank相對的比A-CUT厚,因此提供較好的Yield與低單價,在選擇適當的切割前,要注意的是他們所擁有的不同移動參數和頻率VS溫度特性。   圖五 溫度曲線圖   改變負載電容和Pullability Pullability是定義頻率與負載電容的關係,而負載電容是指與晶體串聯或是並聯的電容。如果晶體工作在並聯振盪時,晶體就會等效於電感,當電抗改變時,頻率也會跟著改變,不同的頻率在與間,由晶體的與CL決定。 (公式一)   相同的晶體在3倍頻工作模式下,Pullability影響較小,因為C1在3倍頻模式下的電容值是在基頻下的約1/9。? 如果CL小或者是C1大,則頻率的靈敏度就會提升,導致在較小負載電容的情況下,設計和控制準確頻率的難度很高。 Overtone Crystal 倍頻的晶體架構(圖六),為基頻的奇數倍。   圖六 overtone crystal model   Crystal的基本參數 (公式二)     (公式三)       (公式四)   (公式五)   Change frequency(serial to parallel)   振盪原理 在瞭解晶體的電器特性後,我們可以來設計一個穩定的振盪器,使用放大器來設計振盪線路,必須滿足在起振頻率點的兩個條件:? (1)必須為正迴授,即在輸入與輸出的相位相差360度。? (2)在起振頻率開迴路增益必須大於一。 就像Barkhausen所提的法則,共振器必須把需求頻率以外的增益抑制,並提供所需的相位偏移。 (圖七)是描述兩個最普遍的振盪配置圖,是使用反相器來做振盪,是目前最受歡迎的設計方式。   圖七 (a)串聯共振振盪器 (b)並聯共振振盪器   為完整起見,我們也畫出使用離散元件來設計振盪電路,如(圖八)所示。我們使用雙極性或單極性電晶體來達成,今天這些振盪器似乎被限定在專門的應用或是非常便宜的玩具上。   圖八 (a)Pierce振盪器 (b)Colpitts振盪器 (c) Clapp振盪器   考慮串聯振盪如圖七(a)所示,兩個反向器達成360度的相位移,當晶體在起振頻率時,阻抗相當於R1,有最少衰減。第一個反向器上的電阻是提供一個偏壓,使它能工作在線性區。第二個反向器驅動晶體振盪出方波。由於晶體的高Q值和反向器的增益在高頻時會急遽下降,方波所包含的諧波被壓抑,所以sine wave可以在第一個反向器輸入端觀察到。 並聯共振,如圖七(b),是目前被使用最多的方法,通常被當作IC內部clock使用。不像串聯共振,它只需要一個反向器提供一個180度的位移,剩下的90度位移由R2 C2來提供,晶體本身振動在串聯諧振,晶體內部的R連同C1增加90度,全部共移動360度,R1是提供反向器工作在線性區。如果有足夠的增益在晶體的振盪頻率,就可以滿足Barkhausen法則。? 理論上

文档评论(0)

phltaotao + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档