基于rs与ls-svm多分类法的故障诊断方法及其应用-中南大学学报.pdfVIP

基于rs与ls-svm多分类法的故障诊断方法及其应用-中南大学学报.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
40 2 ( ) Vol.40 No.2 2009 4 Journal of Central South University (Science and Technology) Apr. 2009 RS LS-SVM 1, 2 1 1 1 (1. 410083 2. 512024) (RS) (LS-SVM)RS 90% TP277 A 1672−7207(2009)02−0447−05 Fault diagnosis method based on rough set and least squares support vector machine and its application 1, 2 1 1 1 JIANG Shao-hua , GUI Wei-hua , YANG Chun-hua , DAI Xian-jiang (1. School of Information Science and Engineering, Central South University, Changsha 410083, China; 2. School of Computer Science, Shaoguan University, Shaoguan 512024, China) Abstract Aiming at the complex and variable reaction of Pb-Zn smelting in imperial smelting furnace (ISF), a novel method for the furnace fault diagnosis based on rough set (RS) and least squares support vector machine(LS-SVM) was put forward. According to the method, the original fault examples were reduced by using the rough set theory to get a simple rule collection as eigenvectors, and then these eigenvectors were input into multiple fault classifiers of LS-SVM to identify faults. The experimental results show that the method has better classification performance and its classification precision reaches more than 90%. Key words: rough set(RS); least squares support vector machine(LS-SVM); multi-class classifiers; fault diagnosis [1−2] [4−6] (Least squares support vector machineLS-SVM)SVM (Support [7−9]SVM vector machineSVM)Vapnik

文档评论(0)

suijiazhuang1 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档