collective human mobility pattern from taxi trips in urban area人类集体迁移模式在市区出租车旅行.pdfVIP

collective human mobility pattern from taxi trips in urban area人类集体迁移模式在市区出租车旅行.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
collective human mobility pattern from taxi trips in urban area人类集体迁移模式在市区出租车旅行

Collective Human Mobility Pattern from Taxi Trips in Urban Area 1,2 2 1 3 ` 4 Chengbin Peng , Xiaogang Jin , Ka-Chun Wong , Meixia Shi , Pietro Lio * 1 Mathematical and Computer Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Kingdom of Saudi Arabia, 2 Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou, China, 3 College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China, 4 Computer Laboratory, Cambridge University, Cambridge, United Kingdom Abstract We analyze the passengers’ traffic pattern for 1.58 million taxi trips of Shanghai, China. By employing the non-negative matrix factorization and optimization methods, we find that, people travel on workdays mainly for three purposes: commuting between home and workplace, traveling from workplace to workplace, and others such as leisure activities. Therefore, traffic flow in one area or between any pair of locations can be approximated by a linear combination of three basis flows, corresponding to the three purposes respectively. We name the coefficients in the linear combination as traffic powers, each of which indicates the strength of each basis flow. The traffic powers on different days are typically different even for the same location, due to the uncertainty of the human motion. Therefore, we provide a probability distribution function for the relative deviation of the traffic power. This distribution function is in terms of a series of functions for normalized binomial distributions. It can be well explained by statistical theories and is verified by empirical data. These findings are applicabl

您可能关注的文档

文档评论(0)

xyz118 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档