an enhanced probabilistic lda for multi-class brain computer interface一个增强的概率lda对多层次大脑计算机接口.pdfVIP

an enhanced probabilistic lda for multi-class brain computer interface一个增强的概率lda对多层次大脑计算机接口.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
an enhanced probabilistic lda for multi-class brain computer interface一个增强的概率lda对多层次大脑计算机接口

An Enhanced Probabilistic LDA for Multi-Class Brain Computer Interface Peng Xu*, Ping Yang, Xu Lei, Dezhong Yao* Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China Abstract Background: There is a growing interest in the study of signal processing and machine learning methods, which may make the brain computer interface (BCI) a new communication channel. A variety of classification methods have been utilized to convert the brain information into control commands. However, most of the methods only produce uncalibrated values and uncertain results. Methodology/Principal Findings: In this study, we presented a probabilistic method ‘‘enhanced BLDA’’ (EBLDA) for multi- class motor imagery BCI, which utilized Bayesian linear discriminant analysis (BLDA) with probabilistic output to improve the classification performance. EBLDA builds a new classifier that enlarges training dataset by adding test samples with high probability. EBLDA is based on the hypothesis that unlabeled samples with high probability provide valuable information to enhance learning process and generate a classifier with refined decision boundaries. To investigate the performance of EBLDA, we first used carefully designed simulated datasets to study how EBLDA works. Then, we adopted a real BCI dataset for further evaluation. The current study shows that: 1) Probabilistic information can improve the performance of BCI for subjects with high kappa coefficient; 2) With supplementary training samples from the test samples of high probability, EBLDA is significantly better than BLDA in classification, especially for small training datasets, in which EBLDA can obtain a refined decision boundary by a shift of BLDA decision boundary with the support of the information from test sampl

您可能关注的文档

文档评论(0)

118zhuanqian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档