二维卷积运算-Read.DOCVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
二维卷积运算-Read

一、二维卷积运算 Gabor变换的本质实际上还是对二维图像求卷积。因此二维卷积运算的效率就直接决定了Gabor变换的效率。在这里我先说说二维卷积运算以及如何通过二维傅立叶变换提高卷积运算效率。在下一步分内容中我们将此应用到Gabor变换上,抽取笔迹纹理的特征。 1、离散二维叠加和卷积 关于离散二维叠加和卷积的运算介绍的书籍比较多,我这里推荐William K. Pratt著,邓鲁华 张延恒 等译的《数字图像处理(第3版)》,其中第7章介绍的就是这方面的运算。为了便于理解,我用下面几个图来说明离散二维叠加和卷积的求解过程。 A可以理解成是待处理的笔迹纹理,B可以理解成Gabor变换的核函数,现在要求A与B的离散二维叠加卷积,我们首先对A的右边界和下边界填充0(zero padding),然后将B进行水平翻转和垂直翻转,如下图: 然后用B中的每个值依次乘以A中相对位置处的值并进行累加,结果填入相应位置处(注意红圈位置)。通常二维卷积的结果比A、B的尺寸要大。如下图所示: 2、快速傅立叶变换卷积 根据傅立叶变换理论,对图像进行二维卷积等价于对图像的二维傅立叶变换以及核函数的二维傅立叶变换在频域求乘法。通过二维傅立叶变换可以有效提高卷积的运算效率。但在进行傅立叶变换时一定要注意“卷绕误差效应”,只有正确对原有图像以及卷积核填补零后,才能得到正确的卷积结果。关于这部分内容可以参考William K. Pratt著,邓鲁华 张延恒 等译的《数字图像处理(第3版)》第9章的相关内容,此处就不再赘述。 目前网上可以找到开源C#版的快速傅立叶变换代码(Exocortex.DSP),我使用的是1.2版,2.0版似乎只能通过CVS从SourceForge上签出, 并且功能没有什么太大改变。将Exocortex.DSP下载下来后,将源代码包含在自己的项目中,然后就可以利用它里面提供的复数运算以及傅立叶变换功能了。为了测试通过傅立叶变换求卷积的有效性,特编写以下代码: using System; using Exocortex.DSP; class MainEntry { static void Main() { fftConv2 c = new fftConv2(); c.DoFFTConv2(); } } public class fftConv2 { double[,] kernel = {{-1, 1}, {0, 1}}; double[,] data = {{10,5,20,20,20}, {10,5,20,20,20}, {10,5,20,20,20}, {10,5,20,20,20}, {10,5,20,20,20}}; Complex[] Kernel = new Complex[8*8]; Complex[] Data = new Complex[8*8]; Complex[] Result = new Complex[8*8]; private void Init() { for(int y=0; y2; y++) for(int x=0; x2; x++) Kernel[y*8+x].Re = kernel[y,x]; for(int y=0; y5; y++) for(int x=0; x5; x++) Data[y*8+x].Re = data[y,x]; } public void DoFFTConv2() { Init(); Fourier.FFT2(Data, 8, 8, FourierDirection.Forward); Fourier.FFT2(Kernel, 8, 8, FourierDirection.Forward); for(int i=0; i8*8; i++) Result[i] = Data[i] * Kernel[i] / (8*8); Fourier.FFT2(Result, 8, 8, FourierDirection.Backward); for(int y=0; y6; y++) { for(int x=0; x6; x++)

您可能关注的文档

文档评论(0)

2105194781 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档