脑-机接口中小波和小波包方差的特征比较-journalofnortheastern.pdfVIP

脑-机接口中小波和小波包方差的特征比较-journalofnortheastern.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
脑-机接口中小波和小波包方差的特征比较-journalofnortheastern

第33卷第10期 东 北 大 学 学 报 ( 自 然 科 学 版 ) Vol. 33, No. 10 2012 年 10 月 Journal of Northeastern U niversity( Natural cience) O ct. 2 0 1 2 - 颜世玉, 王 宏, 赵海滨, 刘 冲 ( , 110819) : - , , , , C3, C4 , , 8643% , 432 431 s , ; , : - ; ; ; ; : R 318 : A : 1005-3026(2012) 10- 1504-05 Comparison of Variance Feature Between Wavelet and Wavelet Packet in Brain- Computer Interface YA N Shi-y u, WA N G H ong , ZH A O H a i- bi n, LI U Chong ( chool of Mechanical Engineering Automation, Northeastern University, henyang 110819, China. Corresponding author : YAN h-i yu, E-mail: shyyan @ me. neu. edu. cn) Abstract: A method using variance as feature and using classification rate as one of evaluation criteria was proposed for the brain-computer interface( BCI) design of two kinds of imagery tasks. T he w avelet theory w as firstly discussed, and cross-banding of w avelet packet decomposition was analyzed. Variances of w avelet and w avelet packet coefficients w ere taken as features, then the tw o EEG features w ere extracted from the electrodes C3 and C4, and they w ere finally classified by using a linear support vector machine. The results showed that the maximum classification accuracies of both features w ere 86. 43% and the corresponding times w ere 4. 32 and 4. 31 s. o, it w as suitable to use w avelet variance and w avelet packet variance as features. The presented classification rate could reflect the classification accuracies and classification time at the same time, and also give a new idea for classification of imagery tasks in BCI. Key words: brain-computer interface; w avelet analysis; variance; support vector machine; classification time ( brain- computer interface, B

文档评论(0)

wangsux + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档