a top-performing algorithm for the dream3 gene expression prediction challengedream3基因表达的表现算法预测的挑战.pdfVIP
- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
a top-performing algorithm for the dream3 gene expression prediction challengedream3基因表达的表现算法预测的挑战
A Top-Performing Algorithm for the DREAM3 Gene
Expression Prediction Challenge
Jianhua Ruan*
Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas, United States of America
Abstract
A wealth of computational methods has been developed to address problems in systems biology, such as modeling gene
expression. However, to objectively evaluate and compare such methods is notoriously difficult. The DREAM (Dialogue on
Reverse Engineering Assessments and Methods) project is a community-wide effort to assess the relative strengths and
weaknesses of different computational methods for a set of core problems in systems biology. This article presents a top-
performing algorithm for one of the challenge problems in the third annual DREAM (DREAM3), namely the gene expression
prediction challenge. In this challenge, participants are asked to predict the expression levels of a small set of genes in a
yeast deletion strain, given the expression levels of all other genes in the same strain and complete gene expression data for
several other yeast strains. I propose a simple k-nearest-neighbor (KNN) method to solve this problem. Despite its simplicity,
this method works well for this challenge, sharing the ‘‘top performer’’ honor with a much more sophisticated method. I
also describe several alternative, simple strategies, including a modified KNN algorithm that further improves the
performance of the standard KNN method. The success of these methods suggests that complex methods attempting to
integrate multiple data sets do not necessarily lead to better performance than simple yet robust methods. Furthermore,
none of these top-performing methods, including the one by a different team, are based on gene regulatory networks,
which seems to suggest that accurately modeling gene expression using gene re
您可能关注的文档
- a randomized controlled trial of chloroquine for the treatment of dengue in vietnamese adults氯喹治疗的随机对照试验登革热在越南的成年人.pdf
- a rct of a transdiagnostic internet-delivered treatment for three anxiety disorders examination of support roles and disorder-specific outcomes个随机对照试验的transdiagnostic互联网提供治疗三个考试焦虑症的支持角色和disorder-specific结果.pdf
- a reaction-diffusion model of human brain development人类大脑的反应扩散模型的发展.pdf
- a reaction-diffusion model of ros-induced ros release in a mitochondrial network的反应扩散模型ros-induced ros在线粒体网络发布.pdf
- a reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice植物固醇的机制的重新评价促进小鼠中性甾醇损失.pdf
- a recent class of chemosensory neurons developed in mouse and rat最近的化学感应的神经元在老鼠和老鼠.pdf
- a reaction-diffusion model to capture disparity selectivity in primary visual cortex反应扩散模型来捕获差距选择性初级视觉皮层.pdf
- a recipe for self-renewing brain导致大脑自我更新.pdf
- a recombination hotspot in a schizophrenia-associated region of gabrb2重组热点gabrb2 schizophrenia-associated地区.pdf
- a red-blooded transcription factor一个精力充沛的转录因子.pdf
- 大单元02大气受热状况与运动(主题训练)(原卷版).docx
- 11我与社会(金牌课件)-八年级道德与法治上册金牌课件练习.pptx
- 42凝聚法治共识(课件)-九年级道德与法治上学期优质课件练习.pptx
- 黄金卷07-2023年高考历史模拟卷(考试版)2.docx
- 《100分闯关》四年级数学下册(人教版)习题课件第四单元整理和复习.ppt
- 第32讲应用文写作之投诉信(练)-2024年高考英语一轮复习(新教材新高考)(原卷版).docx
- 第09讲民族团结与祖国统一--2022年八年级历史寒假课.doc
- 预测卷02(原卷版)_1.docx
- 七年级道德与法治开学摸底考试卷(考试版)5.docx
- 重庆市七校联考2024-2025学年高一上学期第一次月考化学试题2.docx
文档评论(0)