- 1、本文档共54页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
卷积神经网络分析
Presentation layout Introduction Drawbacks of previous neural networks Convolutional neural networks LeNet 5 Comparison Disadvantage Application Introduction Behavior of multilayer neural networks Multi-layer perceptron and image processing One or more hidden layers Sigmoid activations functions Drawbacks of previous neural networks the number of trainable parameters becomes extremely large Drawbacks of previous neural networks Little or no invariance to shifting, scaling, and other forms of distortion Drawbacks of previous neural networks Little or no invariance to shifting, scaling, and other forms of distortion Drawbacks of previous neural networks Drawbacks of previous neural networks scaling, and other forms of distortion Drawbacks of previous neural networks the topology of the input data is completely ignored work with raw data. Drawbacks of previous neural networks Black and white patterns: Gray scale patterns : Drawbacks of previous neural networks Improvement Fully connected network of sufficient size can produce outputs that are invariant with respect to such variations. Training time Network size Free parameters History In 1995, Yann LeCun and Yoshua Bengio introduced the concept of convolutional neural networks. About CNN’s CNN’s Were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex. They designed a network structure that implicitly extracts relevant features. Convolutional Neural Networks are a special kind of multi-layer neural networks. About CNN’s CNN is a feed-forward network that can extract topological properties from an image. Like almost every other neural networks they are trained with a version of the back-propagation algorithm. Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing. They can recognize patterns with extreme variability (such as handwritten char
您可能关注的文档
- 卡丁车制动性能的检测(完整)分析.docx
- 博艺路站站测量方案终版分析.doc
- 博达交换机常用配置命令手册分析.ppt
- 博物馆智能化系统工程分析.ppt
- 卡多利亚兰美丽的丹顶鹤分析.ppt
- 卡改盘正常操作步骤分析.docx
- 卡特(CAT)柴油机中修维修程序分析.doc
- 博达教育--ACT阅读1分析.pptx
- 卡西欧5800程序命令解读分析.doc
- 卡培他滨在进展期胃癌的应用与优化-王玉栋分析.ppt
- 人教版(2019)必修第二册Unit 1 Cultural Heritage Listening .pptx
- 人教版(2019)必修第一册Unit 3 Sports and Fitness Reading fo.pptx
- 人教版(2019) 必修第一册 Unit 1 Teenage Life Reading and.pptx
- 人教版(2019)选择性必修第一册Unit 5 Working the Land Reading a.pptx
- 期末综合测试题 2024-2025学年下期初中英语人教版八年级下册.docx
- 期末综合测试题 2024-2025学年下期初中道德与法治统编版八年级下册.docx
- 初中英语人教版七年级上经典必备作文10篇.docx
- 第17课 明朝的灭亡和清朝的建立 巩固练习 2024-2025学年下期初中历史统编版七年级下.docx
- 人教版(2019)必修三 Unit 1 Festivals and Celebrations Lis.pptx
- 人教版(2019)必修三 Unit 3 Diverse Cultures Reading for W.pptx
文档评论(0)