Active Motor Babbling for SensoryMotor (活跃的电动机为SensoryMotor胡说).pdfVIP

Active Motor Babbling for SensoryMotor (活跃的电动机为SensoryMotor胡说).pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Active Motor Babbling for SensoryMotor (活跃的电动机为SensoryMotor胡说)

Active Motor Babbling for Sensory-Motor Learning∗ Ryo Saegusa, Giorgio Metta, and Giulio Sandini Sophie Sakka Robotics, Brain and Cognitive Sciences Department Laboratory of Solids Mechanics Italian Institute of Technology University of Poitiers Via Morego 30, 16163 Genoa, Italy BP30179-86962 Futuroscope Chasseneuil Cedex, France ryos@ieee.org, pasa@liralab.it, giulio.sandini@iit.it sophie.sakka@lms.univ-poitiers.fr Abstract—For a complex autonomous robotic system such a modular control approach [3], which couples a forward as a humanoid robot, the motor-babbling based sensory-motor model (state predictor) and an inverse model (controller). learning is considered effective to develop an internal model The forward model predicts the next state from a current of the self-body and the environment autonomously. In this paper we propose a methodology of sensory-motor learning state and a motor command (an efference copy), while and its evaluation towards active learning. The proposed model the inverse model generates a motor command from the is characterized by a function called confidence, which works current state and the predicted state. Even if a proper motor as a memory of reliability for state prediction and control. command is unknown, the feedback error learning procedure The confidence for the state can be a good measure to bias (FEL) provides a suitable approximation [4]. The prediction the next exploration strategy of data sampling, such as to direct its state to the unreliable domain. We consider the error contributes to gate lear

您可能关注的文档

文档评论(0)

jiupshaieuk12 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:6212135231000003

1亿VIP精品文档

相关文档