Locally Uniform Comparison Image Descriptor (局部图像描述符统一的比较).pdf

Locally Uniform Comparison Image Descriptor (局部图像描述符统一的比较).pdf

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Locally Uniform Comparison Image Descriptor (局部图像描述符统一的比较)

Locally Uniform Comparison Image Descriptor Andrew Ziegler Eric Christiansen David Kriegman Serge Belongie Department of Computer Science and Engineering, University of California, San Diego amz@, echristiansen, kriegman, sjb@ Abstract Keypoint matching between pairs of images using popular descriptors like SIFT or a faster variant called SURF is at the heart of many computer vision algorithms including recognition, mosaicing, and structure from motion. However, SIFT and SURF do not perform well for real-time or mobile applications. As an alternative very fast binary descriptors like BRIEF and related methods use pairwise compar- isons of pixel intensities in an image patch. We present an analysis of BRIEF and related approaches revealing that they are hashing schemes on the ordinal correla- tion metric Kendall’s tau. Here, we introduce Locally Uniform Comparison Image Descriptor (LUCID), a simple description method based on linear time permuta- tion distances between the ordering of RGB values of two image patches. LUCID is computable in linear time with respect to the number of pixels and does not require floating point computation. 1 Introduction Local image descriptors have long been explored in the context of machine learning and computer vision. There are countless applications that rely on local feature descriptors, such as visual regis- tration, reconstruction and object recognition. One of the most widely used local feature descriptors is SIFT which uses automatic scale selection, orientation normalization, and histograms of oriented gradients to achieve partial affine invariance [15]. SIFT is known for its versatility and reliable recognition performance, but these characteristics come at

您可能关注的文档

文档评论(0)

wnqwwy20 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:7014141164000003

1亿VIP精品文档

相关文档