胡贵方《流行病学》20160406-TT-treelets-an adaptive multi-scale basis for sparse unordered data.pdfVIP

胡贵方《流行病学》20160406-TT-treelets-an adaptive multi-scale basis for sparse unordered data.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
NIH Public Access Author Manuscript Ann Appl Stat . Author manuscript; available in PMC 2014 December 02. N Published in final edited form as: I H Ann Appl Stat . 2008 June ; 2(2): 489–493. doi:10.1214/07-AOAS137. - P A A u DISCUSSION OF: TREELETS—AN ADAPTIVE MULTI-SCALE t h o r BASIS FOR SPARSE UNORDERED DATA M a n Catherine Tuglus and Mark J. van der Laan u s University of California, Berkeley c r i p Catherine Tuglus: ctuglus@berkeley.edu; Mark J. van der Laan: laan@berkeley.edu t Abstract We would like to congratulate Lee, Nadler and Wasserman on their contribution to clustering and data reduction methods for high p and low n situations. A composite of clustering and traditional principal components analysis, treelets is an innovative method for multi-resolution analysis of N unordered data. It is an improvement over traditional PCA and an important contribution to I H - clustering methodology. Their paper presents theory and supporting applications addressing the P A two main goals of the treelet method: (1) Uncover the underlying structure of the data and (2) Data A reduction prior to statistical learning methods. We will organize our discussion into two main parts u t h to address their methodology in terms of each of these two goals. We will present and discuss o r treelets in terms of a clustering algorithm and an improvement over traditional PCA. We will also M discuss the applicability of treelets to more general data, in particular, the application of treelets to a n microarra

文档评论(0)

***** + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8135026137000003

1亿VIP精品文档

相关文档