- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于个性化推荐学习的网络培训教学课程平台的设计与实现.doc
基于个性化推荐学习的网络培训教学课程平台的设计与实现
[摘 要]针对传统中小学教师继续教育课堂培训教学模式存在教学环节过于单调和程序化,忽?学生的主体性和个性特征等方面的不足,研究并设计了一个适应在职教师培训的自主个性化学习的网络培训课程教学平台。首先讨论通过建立基于个性化推荐的网络培训课程平台来实现“一体两翼”的培训目标,接着介绍了平台的设计方案、教学平台系统的功能、系统结构,最后重点阐述了课程平台的系统核心技术的实现。该平台的构建可有效提高教师培训的教学效率和教学质量,为探索有效提升在职教师培训的新模式提供新途径,为解决国培等培训项目培训质量提升提供新方法。
[关键词]个性化推荐学习;关联规则;在线教学平台;网络教学;教师培训
[中图分类号] G64 [文献标识码] A [文章编号] 2095-3437(2017)05-0196-03
随着信息技术的飞速发展,计算机技术不断地在教师培训领域中渗透与融合。教育部办公厅印发的《2017年教育信息化工作要点》明确提出, 深入推进信息技术与教育教学深度融合,深化数字教育资源开发与应用,加强网络学习空间应用广度与深度。教师培训属于一种在职继续教育,有其特点和难点,在线学习,个性化学习作为近年来研究的一种新的培训方式,更重视在职培训学生的主体性和个性特征,让学生实现更高效的学习,无疑将在未来教育技术发展过程中占据主导地位。无论从培训机构层面还是从受培训学生需求层面看,多元化、智能化、个性化的网络教学必将成为未来在职教师培训领域发展的主要方向。
国家对于在职教师的培训越来越重视,每年投入大量的国培等各类培训项目经费,但培训效果却不尽于人意。这是因为在职教师“半生不熟”的知识结构造成的,“不怕不懂,就怕一知半解”告诉我们传统的课堂统一教学培训模式,是导致在职教师培训热情不高,培训目标参差不齐的主要原因。因此,网络研修、校本研修、乡村教师工作坊等依托网络教学的培训项目成为当前全国中小学教师继续教育资助的重点领域。近年来,我校也适时提出通过建立教师在线培训工作坊和“一体两翼”来破解教师培训瓶颈,“一体”是以教师自主校本研修为主体,“两翼”分别是远程培训和集中培训。这些都迫切需要网络在线培训平台的技术支撑。
根据培训目标和教学系统的建设要求,本文提出了一种基于个性化推荐学习的在线课程教学平台的设计与实现技术。基于个性化推荐学习的在线课程教学平台系统是一个跨平台、跨数据库、可扩充和可移植的系统。系统通过智能学习到访者的特征和使用痕迹,调整使用者的学习内容和训练题库,同时,根据使用者的学习情况自动分析使用者的潜在学习需求,推送课程知识,供使用者自主选择学习。大部分的教学资源和信息资源采用网络数据库存储,充分利用和整合网络资源的有效利用。
一、相关工作
本系统平台的核心技术是通过关联规则挖掘来实现个性化推荐学习课程知识。个性化推荐服务被广泛应用于数字图书馆、电子商务、新闻网站等各个领域中。[1]个性化推荐服务根据用户兴趣的相似性来推荐资源,通过研究不同用户的兴趣 ,主动为用户推荐最需要的资源。个性化推荐技术主要有三种:基于规则过滤技术、基于内容过滤技术、基于协作过滤技术。[2]该项技术是提高个性化、自主学习的一种重要手段。近年来,随着数据挖掘领域的拓展,利用关联规则实现基于规则的过滤推荐成为主流。文献[3]提出了一个简单高效的关联规则和序列模式挖掘算法Predictor,该算法具有较快的响应速度,可以满足实时页面推荐的需要,同时该算法还可以进行增量挖掘。文献[4]Weiyang Lin等也是提出一种高效的关联规则算法来实现个性化推荐。
关联规则也称为关联模式,关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。是一种较好的信息推荐方法。是形如:A(年龄(X,“20...30”), 职业(X,“学生”))→B(购买(X,“笔记本电脑”))的形式。挖掘算法首先由Agrawal等提出来和研究,Agrawal等提出基于频繁项集的剪枝算法分为两个阶段,首先找出所有的频繁项集,然后由频繁项集产生强关联规则,这些规则必须满足最小支持度和最小可信度。支持度(support): P(A∪B),即A和B这两个项集在事务集TS中同时出现的概率。置信度(confidence): P(B|A),即在出现项集A的事务集TS中,项集B也同时出现的概率。同时满足最小支持度阈值和最小置信度阈值的规则称为强规则。给定一个事务集TS,挖掘关联规则问题就是产生支持度和可信度分别大于用户给定的最小支持度和最小可信度的关联规则,也就是产生强规则的问题。为了降低个性学习推荐系统的研发难度,本系统引擎模块通过接口调用比较著名的成熟开源数据挖掘平台Weka实现相应功能。
二、系统平台设计
您可能关注的文档
最近下载
- DB41T 2431-2023 重点区域地质灾害风险调查评价规范(1:10000).docx VIP
- 2012 INTERNATIONAL BUILDING CODE (2012年国际建筑规范).pdf VIP
- 金龙湖养老度假基地可行性报告.doc VIP
- 光伏发电工程施工规范.docx VIP
- 渗透检测工艺规程.pptx VIP
- 质量员考试(市政质量)基础知识试卷真题(2025年新版附解析).docx VIP
- 幼儿园课件:变焦PPT.ppt
- KEF音响无线HiFi扬声器LS50 Wireless II用户手册.pdf VIP
- 一种低气味、低刺激双固化胶粘剂及其制备方法.pdf VIP
- 设计机构设置和岗位职责.docx VIP
文档评论(0)