移动机器人路径规划强化学习的初始化-控制理论与应用.pdf

移动机器人路径规划强化学习的初始化-控制理论与应用.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
移动机器人路径规划强化学习的初始化-控制理论与应用

29 12 Vol. 29 No. 12 2012 12 Control Theory Applications Dec. 2012 :2012 , , (1. , 250061; 2. () , 264209; 3. , 255012) : , . , , . , . . , , . , , . : ; ; ; ; : TP242 : A Initialization in reinforcement learning for mobile robots path planning SONG Yong , LI Yi-bin , LI Cai-hong (1. School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China; 2. School of Mechanical, Electrical Information Engineering, Shandong University at Weihai, Weihai Shandong 264209, China; 3. School of Computer Science and Technology, Shandong University of Technology, Zibo Shandong 255012, China ) Abstract: To improve the convergence rate of the standard Q-learning algorithm, we propose an initialization method for the reinforcement learning of the mobile robot, based on the artificial potential field (APF) -a virtue field of the robot workspace. The potential energy of each point in the field is specified based on prior knowledge, which represents the maximum cumulative reward by following the optimal path policy. In APF, points corresponding to obstacles have null potential energy; the objective point has the global maximum potential energy in the workspace. The initial Q value is defined as the immediate reward at the current point plus the maximum cumulative reward at succeeding points by following the optimal path policy. By initializing the Q value, we find that the improved algorithm converges more rapidly and steadily than the original algorithm. The propose

文档评论(0)

magui + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8140007116000003

1亿VIP精品文档

相关文档