- 1、本文档共12页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Glossary:
ls(least squares)最小二乘法
R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,gt;0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整
Adjust R-seqaured()
S.E of regression回归标准误差
Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确
Durbin-Watson stat:DW统计量,0-4之间
Mean dependent var因变量的均值
S.D. dependent var因变量的标准差
Akaike info criterion赤池信息量(AIC)(越小说明模型越精确)
Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确)
Prob(F-statistic)相伴概率
fitted(拟合值)
线性回归的基本假设:
1.自变量之间不相关
2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布
3.样本个数多于参数个数
建模方法:
ls y c x1 x2 x3 ...
x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。模型的实际业务含义也有指导意义,比如m1同gdp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:
1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度
F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
2)回归系数显著性检验(t检验):检验每一个自变量的合理性
|t|大于临界值表示可拒绝系数为0的假设,即系数合理。t分布的自由度为n-p-1,n为样本数,p为系数位置
3)DW检验:检验残差序列的自相关性,检验基本假设2(随机误差相互独立)
残差:模型计算值与资料实测值之差为残差
0lt;=dwlt;=dl 残差序列正相关,dult;dwlt;4-du 无自相关, 4-dllt;dwlt;=4负相关 ,若不在以上3个区间则检验失败,无法判断
demo中的dw=0.141430 ,dl=1.73369,du=1.7786,所以存在正相关
模型评价
目的:不同模型中择优
1)样本决定系数R-squared及修正的R-squared
R-squared=SSR/SST 表示总离差平方和中由回归方程可以解释部分的比例,比例越大说明回归方程可以解释的部分越多。
Adjust R-seqaured=1-(n-1)/(n-k)(1-R2)
2)对数似然值(Log Likelihood,简记为L)
残差越小,L越大
3)AIC准则
AIC= -2L/n+2k/n, 其中L为 log likelihood,n为样本总量,k为参数个数。
AIC可认为是反向修正的L,AIC越小说明模型越精确。
4)SC准则
SC= -2L/n + k*ln(n)/n
用法同AIC非常接近
预测forecast
root mean sequared error(RMSE)均方根误差
Mean Absolute Error(MAE)平均绝对误差
这两个变量取决于因变量的绝对值,
MAPE(Mean Abs. Percent Error)平均绝对百分误差,一般的认为MAPElt;10则认为预测精度较高
Theil Inequality Coefficient(希尔不等系数)值为0-1,越小表示拟合值和真实值差异越小。
偏差率(bias Proportion),bp,反映预测值和真实值均值间的差异
方差率(variance Proportion),vp,反映预测值和真实值标准差的差异
协变率(covariance Proportion),cp,反映了剩余的误差
以上三项相加等于1。
预测比较理想是bp,vp比较小,值集中在cp上。
eviews不能直接计算出预测值的置信区间,需要通过置信区间的上下限公式来计算。如何操作?
其他
1)Chow检验
chows breakpoint检验
零假设是:两个子样本拟合的方程无显著差异。有差异则说明关系中结构发生改变
demo中
Chow Breakpoint Test: 1977Q1
F-
您可能关注的文档
- 第三章 2016继续教育文献检索篇(90分以上).docx
- 第五章 ceac办公应用考试大纲.doc
- 建筑工程大清包合同书概论.doc
- 基于Word中有哪些信誉好的足球投注网站的高级技巧(替换,查找).doc
- 酷派行业培训资料介绍.pdf
- 4. 第 4 章 公共管理的环境及内容.doc
- 奥斯维辛没有什么新闻教案课件.doc
- 公民道德规范讲座的知识.doc
- 通用表格(横向)指南.docx
- 笔记本电脑键盘功能详解教案.doc
- 北师大版小学数学三年级上册《寄书》教学设计.docx
- 统编版(部编版)语文二年级上册《雪孩子》教学设计.docx
- 统编版(部编版)语文二年级上册《八角楼上》教学设计.docx
- 北师大版小学数学三年级上册《长方形周长》教学设计.docx
- 北师大版小学数学三年级上册《丰收了》教学设计.docx
- 统编版(部编版)语文二年级上册《夜宿山寺》教学设计.docx
- 统编版(部编版)语文二年级上册《风娃娃》教学设计.docx
- 统编版(部编版)语文二年级上册《朱德的扁担》教学设计.docx
- 统编版(部编版)语文二年级上册《难忘的泼水节》教学设计.docx
- 统编版(部编版)语文二年级上册《纸船和风筝》教学设计.docx
文档评论(0)