图像识别技术综述.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
图像识别技术综述

图像处理与识别技术综述 摘要:本文简要介绍了图像处理与识别技术的相关知识,介绍了图像识别过程中的判别函数和判别规则,特征提取和选择的方法。设计一个基于16位处理器MC9S12XS128的图像识别系统在实际中的具体硬件实现。 关键词:图像识别 特征提取 MC9S12XS128 数字摄像头 An Overview of Image Recognition And Identifying Technology Abstract:This paper introduces some knowledge of image recognition and identifying technology,introduces the discriminant function discriminant rule in the image identifying progress, feature extraction and selection method. Designed an image identifying system based on 16-bit controller MC9S12XS128,and it has specific hardware implementation in fact. Key words: image identifying discriminaut rule MC9S12XS128 digital cameral 1 引言 图像是与视觉相关的最贴近生活的信息,它是客观世界的物体直接或间接作用于人眼而产生视知觉的实体。传统的图像处理技术就是对图像进行保存、处理、压缩、传输和重现。随着信息时代的到来,用于计算机处理的各种信息的需求越来越多,多媒体信息处理技术已经成为日常生活各个领域的迫切需要。人们更希望利用计算机技术处理人类视觉问题,如:人脸、指纹识别技术实现处理与个人有关的一切事物,利用视觉自动监视系统监视环境中发生的非常事件,利用字符识别技术实现文档图像的自动录入与处理。因此把传统的图像处理技术与模式识别处理技术相结合是图像处理的新趋势。 2 传统的图像处理技术 图像处理技术始于20世纪50年代,1964年美国喷射推进实验室(JPL)使用计算机对太空船送回的大批月球照片处理后得到了清晰逼真的图像,这是这门技术发展的里程碑,此后这门技术得到了广泛的发展。 传统图像处理技术包含图像的获取、变换、增强、编码、分割等方面的内容。 2.1 图像获取 图像可以根据其形式或产生方法来分类。 图1 图像的分类 图像的获取[4]是指将其变为计算机可识别的信息。通常是数字化的过程,及扫描、采样、量化三个步骤。经过数字化过程后就得到了一幅图的数字表示,即数字图像。一般这个过程由摄像头等设备完成。反过来还可将数字图像进行显示。 2.2 图像变换 图像变换[6]广泛应用于图像滤波[2]、统计滤波[5]、图像数据压缩以及图像描述等。图像变换是将N×N维空间图像数据变换成另外一组基向量(通常是正交向量空间)的坐标参数,我们希望这些离散图像信号坐标参数更集中代表了图像中的有效信息,或者是更便于达到某种处理目的。 通常采用的方法有:傅里叶变换、相关分析、小波变换[7]、离散余弦变换(DCT)、正弦变换、沃尔什-哈达玛变换、K-L变换[13][14][15](主成分分析法)等。 着重介绍K-L变换在实际中的应用算法SIMCA。SIMCA (Soft Independentt Modeling of Class Analog)方法是一种有监督模式识别方法。该方法是对训练集中每一类样本的量测数据矩阵分别进行主成分分析[10][11][12] (PCA) ,建立每一类的主成分分析数学模型,然后在此基础上对未知样本进行分类,即分别试探将该未知样本与各类样本数学模型进行拟合,以确定其属于哪一类或不属于任何一类。基本的SIMCA方法有两个主要步骤,第一步先建立每一类的主成分分析模型,第二步以未知样本逐一去拟合各类的主成分模型,从而进行判别归类。主成分提取的原理是对高维的原变量空间进行降维,以消除众多化学信息中相互重叠的信息部分,使数目较少的主成分 (新变量) 成为原变量的线性组合,而且新变量应最大限度地表征原变量的数据结构特征而不丢失信息。其方法是将光谱数据向均方差最大方向投影。通过对主成分个数的合理选取,去掉代表干扰组分和干扰因素的主成分,新变量最大限度地反映了被测样品的组成和结构信息,而最小限度地包含噪音。另外,主成分之间相互正交,能够克服原变量多重相关性造成的信息重叠。这样有助于从样品的测量光谱中最大限度地提取有用的化学信息,建立优秀的数学模型。 PCA方法是把光谱矩阵分解为两个维数较小的矩阵的乘积: 其中 为光谱矩阵, 为得

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档