图像处理车牌识别系统设计实验报告97645794.docVIP

图像处理车牌识别系统设计实验报告97645794.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
图像处理车牌识别系统设计实验报告97645794

图像处理车牌识别系统设计实验报告书 目录 一、摘要 2 二、 设计原理 3 1、车牌的定位研究 3 2、字符分割的研究 3 3、字符识别的研究 3 三、 详细设计步骤 3 1、车牌定位 4 1.1 图像的预处理 4 1.2车牌定位 7 2、字符分割 10 2.1对读入图像进行预处理操作 11 2.2图像校正 12 2.3去除水平方向上的边框 13 2.4去除垂直方向上的边框 15 2.5去除车牌上的圆点 17 3、字符识别 20 3.1建立字符模板数据库 20 3.2对分割字符进行匹配 22 4、系统界面的实现 25 四、 设计结果分析 29 五、 设计体会 29 车牌识别系统的设计 一、摘要 车牌是一辆汽车独一无二的信息,因此,对车辆牌照的识别技术可以作为辨识一辆车最为有效的方法。随着ITS(智能交通系统)的高速发展,对车牌识别技术的研究也随之发展。从根本上讲,牌照识别应用了先进的图像处理,模式识别,人工智能技术来获取,处理,解释,记录拍照的图像。目前,③正确识别单个字符。用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。在研究的同时对其中出现的问题进行了具体分析、处理。 设计原理 车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。其核心包括车牌定位算法、车牌字符分割算法和字符识别算法等。 图1 牌照识别系统原理图 主要研究内容如下: 1、车牌的定位研究。 先进行图像的预处理,包括RGB彩色图像的灰度化、图像灰度拉伸、图像边缘检测、灰度图的二值化等;车牌定位采用基于水平和垂直投影分布特征的方法。 字符分割的研究。 先对定位后的车牌图像进行预处理,然后按照车牌的先验信息, 用区域增长算法来确定候选车牌的字符区域。 字符识别的研究。 对于提取出的单个字符,先进行归一化操作,再与给定的模板做对比,识别出字符。 流程图: 1.1 图像的预处理 为了用于牌照的分割和牌照字符的识别,原始图象应具有适当的亮度,较大的对比度和清晰可辩的牌照图象。但由于该系统的摄像部分工作于开放的户外环境,加之车辆牌照的整洁度、自然光照条件、拍摄时摄像机与牌照的矩离和角度以及车辆行驶速度等因素的影响,牌照图象可能出现模糊、歪斜和缺损等严重缺陷,因此需要对原始图象进行识别前的预处理。 一般的车牌识别只对小对象进行移除,但是有时候因为拍照原因,即使对图像进行了很好的预处理,还是不能排除一些比较大的又和车牌比较相像的地方,例如图(1)中,车后面的玻璃窗仅仅进行灰度处理和形态学处理,平滑处理是无法排除其对车牌定位的影响的,因此需要对大对象移除(移除大对象前需对图像进行统一化--压缩)。 图(1) 实现的代码: img=image; I=img; [x,y,z]=size(img); if x2000||y2000 img=img(1:2:end,1:2:end,:); [x,y,z]=size(img); end hsi=rgb2hsi(img); for i=1:x for j=1:y if (hsi(i, j ,1)=0.65hsi(i, j,1)=0.55hsi(i, j, 2)0.4);%0.4 0. hsi(i, j,2)=0; hsi(i, j,3)=1; ; else hsi(i, j,2)=0; hsi(i, j,3)=0; end end end origonImg=hsi2rgb(hsi); rgbnew=origonImg; 灰度校正: 由于牌照图象在拍摄时受到种种条件的限制和干扰,图象的灰度值往往与实际景物不完全匹配,这将直接影响到图象的后续处理。如果造成这种影响的原因主要是由于被摄物体的远近不同,使得图象中央区域和边缘区域的灰度失衡,或是由于摄像头在扫描时各点的灵敏度有较大的差异而产生图象灰度失真,或是由于曝光不足而使得图像的灰度变化范围很窄。这时就可以采用灰度校正的方法来处理,增强灰度的变化范围、丰富灰度层次,以达到增强图象的对比度和分辨率。 灰度校正图 graynew=rgb2gray(rgbnew); 边缘检测: 边缘是指图像局部亮度变化显著的部分,是图像风、纹理特征提取和形状特征提取等图像分析的重要基础。所以在此我们要对图像进行边缘检测。图象增强处理对图象牌照的可辩认度的改善和简化后续的牌照字符定位和分割的难度都是很有必要 实现代码:origonImg=hsi2

文档评论(0)

xyz118 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档