- 1、本文档共30页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
摘要本文的主要工作是运用数据挖掘的相关技术对申请贷款的客户的大量数据进行数据挖掘,发现隐藏在大量数据中的隐含模式,最终得到风险评估模型。本文的内容主要分为数据获取与探查、数据预处理、模型建立和结果分析与应用四个部分。在模型建立的过程中使用了SAS企业数据挖掘模块,基于决策树、回归和神经网络的方法, 充分利用已有数据建立模型, 对申请贷款客户进行科学归类, 从而帮助金融机构提高对贷款信用风险的控制能力。关键词:SAS 分类技术 数据挖掘 预测 贷款风险评估目录:1.绪论31.1项目背景31.2文献综述32.数据获取与探查52.1数据获取52.2数据简介52.3字段说明62.4数据探查93.数据处理与建模93.1数据预处理93.2数据建模过程——决策树163.3数据建模过程——神经网络183.4数据建模过程——回归203.5最佳模型选择214.结果分析与应用225.项目评估与收获275.1项目改进275.2收获28参考文献281.绪论1.1项目背景金融是现代经济的核心,各类金融机构则是现代金融的支柱。各类金融机构在社会经济发展过程中, 发挥着筹集融通资金、引导资产流向、提高资金运用效率和调节社会总需求的作用。中国加入WTO后, 中外金融机构的竞争日益激烈, 中国商业银行必须加快改革步伐, 尽快打造自己的核心竞争力。但是中国金融机构的信贷资产质量较差, 不良贷款的规模大、比例高, 严重阻碍中国金融业的发展。有效控制不良贷款信用风险已经成为中国金融机构面对的主要课题。1.2文献综述目前国际银行业对不良贷款信用风险评估的方法主要采用的是古典分析法和多元统计法[ 1-2] 。古典分析法是指银行经营者依赖一批训练有素的专家的主观判断对贷款人进行信用分析。多元统计分析的基本思想是根据历史累积样本建立数学模型, 并对新样本发生某种事件的可能性进行预测的方法,具体包括线性概率模型、LOGIT法、PROBIT法以及判别分析法(MDA)[ 1] 。巴塞尔委员会于2001 年1月公布了《新巴塞尔资本协议》草案, 新协议给出了两种计量信用风险的方法, 即标准法和内部评级法(IRB), IRB法对标准法中的风险加权系数进行了修正。新协议允许银行使用内部评级方法, 使新协议的监管规则有一定的灵活性。但目前, 金融界使用最多的两个信用风险评估模型是信用度量制(CreditMetrics)模型和KMV模型。CreditMetrics是J.P.Morgan于1997年开发的一种基于VAR方法的信贷风险管理模型 [3] 。所谓VAR就是衡量一项资产或者负债在一定时间内、在一定的置信水平下其价值的最大损益额。CreditMetrics是一种盯市(MTM)模型, 认为如果信用资产的信用等级发生了变化, 就产生了信用损失的可能性, 这种损失是多状态的, 不只是违约和不违约两种状态。KMV模型是KMV公司利用期权定价原理, 提出了以预期违约频率为核心的信用风险管理模型。KMV模型将资产的状态分为违约和不违约两种, 信用损失只发生在违约的时候。而且KMV模型有一个核心的假设, 就是当公司的资产价值下降到一定程度之后, 公司就会对其债务违约。由于受样本数量限制, 国内已有学者对信用风险评估方法进行研究, 着重研究某一具体方法在信用风险评估中的应用。王春峰等[ 4-7] 运用线性判别法、LOGIT法、遗传规划模型、神经网络模型, 以及距离判别法与神经网络方法相结合的组合预测法对信用风险评估方法作了研究。施锡铨等[ 8] 运用线性多元判别方法对上市企业的信用风险评估进行了研究, 得出评价上市企业信用风险水平的线性判别模型。以上所述方法虽然被广泛应用, 但是它们只是针对某一方面如财务, 进行分析建模, 不能够充分利用有关客户和信贷产品的大量且全面的信息。在信贷风险评估中, 对信用风险的评价, 不仅要考虑贷款者的财务能力, 还要考虑贷款者所需求产品的信息等各方面因素, 仅靠单一指标的评价体系不足以对信用风险予以充分揭示。因此, 研究如何从贷款样本数据中挖掘更丰富的信用信息, 建立更完备的信用风险评估模型将成为一种必然。本文使用了SAS企业数据挖掘模块,基于决策树、回归和神经网络的方法, 充分利用已有数据建立模型, 对申请贷款客户进行科学归类, 从而帮助金融机构提高对贷款信用风险的控制能力。2.数据获取与探查2.1数据获取本文的实验数据获取于数据堂,来源于融360。融360是中国最大的网络贷款平台,平台的一端是数亿的有借款需求的小微企业和个人消费者,另一端是数万的有贷款资金的金融机构(银行、小贷、担保、典当等)和数百万的金融产品,平台通过有哪些信誉好的足球投注网站和推荐服务来撮合借款用户和贷款。通常,用户进入平台后,会通过有哪些信誉好的足球投注网站和推荐服务找到合适的贷款产品,填写自己的个人基本资料,最终提交贷款订单。金融机构通过
您可能关注的文档
最近下载
- 信息系统安全管理记录表单汇编.docx
- 炼铁厂1080m3高炉试车方案.doc
- 生物大数据(福建农林大学)中国大学MOOC 慕课 章节测验期末考试答案.docx
- 中国传统节日——冬至节日介绍(教学设计)全国通用五年级上次综合实践活动.docx
- AP微积分BC (2018年真题)全套含选择题及答案.pdf VIP
- OEM代工与加工合同协议书范本 详细版.docx
- 关于农业自动化灌溉浇灌滴灌控制系统设计有关 的外文文献翻译成品:自动灌溉系统的设计与实现(中英文双语对照).docx
- 宪法多选题新题.doc VIP
- Bain-德邦产品融合项目里程碑汇报(上会终稿)-20170525.pptx VIP
- 宪法考试多选题 .pdf VIP
文档评论(0)