维纳过程和伊藤引理.pptVIP

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
维纳过程和伊藤引理

Chapter 2: Brownian Motions and Stochastic Integrals Wiener Processes: Brownian Motions, Ito Processes W(tk+1)= W(tk) + e(tk) ??t, where ?t = tk+1 – tk, k=0,…,N, t0 = 0, and e(tk) iid N(0,1). For jk, W(tk) - W(tj) = ?i=jk-1 e(ti) ??t. The right-hand side is normally distributed, so is the left-hand side. Clearly, E(W(tk) - W(tj) ) = 0. Var (W(tk) - W(tj)) = E [?i=jk-1 e(ti) ??t]2 = (k-j) ?t = tk – tj. For t1 t2 ? t3 t4, W(t4) - W(t3) is uncorrelated with W(t2) - W(t1). Simulation of Brownian Motion Partition [0,1] into n subintervals each with length 1/n. For each t in [0,1], let [nt] denote the greatest integer part of the number nt. For example, if n=10 and t=1/3, then [nt] =[10/3]=3. For each t in [0,1], define a stochastic process S[nt] = ?i=1[nt] e(i)/?n, e(i) iid N(0,1). Clearly, S[nt] = S[nt]-1 + e([nt])/ ?n, a special form of the additive model defined at the beginning with ?t =1/n and W(t)= S[nt]. At time t=1, S[nt] = Sn = ?i=1n e(i)/?n, which has a standard normal distribution. Even if e(i)s are not normally distributed, CLT shows that Sn will still be normally distributed as long as n is big. This is the key idea in constructing a Brownian motion. By letting n goes to infinity (?t goes to 0), Donsker (1953) proved that the stochastic process S[nt] constructed in this way tends to a Brownian motion. This result is known as the Functional Central Limit Theorem or the Invariance Principle. Therefore, the above equation provides a means to simulate the path of a Brownian motion. All we have to do is to iterate the equation S[nt] = S[nt]-1 + e([nt])/ ?n by taking n bigger and bigger and in the limit, we have a Brownian motion. When ?t goes to 0, the discrete-time random walk equation S[nt] = S[nt]-1+e([nt])/?n, can be approximated by the continuous-time equation dW(t) = e(t)?dt . In advanced courses in Probability, it will be shown that this limiting operation is well-defined and the limitin

文档评论(0)

shuwkb + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档