MarkovDecisionProcessesReinforcementLearning创新.pptVIP

MarkovDecisionProcessesReinforcementLearning创新.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Markov Decision Processes Reinforcement Learning Megan Smith Lehigh University, Fall 2006 Outline Stochastic Process Markov Property Markov Chain Markov Decision Process Reinforcement Learning RL Techniques Example Applications Stochastic Process Quick definition: A Random Process Often viewed as a collection of indexed random variables Useful to us: Set of states with probabilities of being in those states indexed over time We’ll deal with discrete stochastic processes Stochastic Process Example Classic: Random Walk Start at state X0 at time t0 At time ti, move a step Zi where P(Zi = -1) = p and P(Zi = 1) = 1 - p At time ti, state Xi = X0 + Z1 +…+ Zi Markov Property Also thought of as the “memoryless” property A stochastic process is said to have the Markov property if the probability of state Xn+1 having any given value depends only upon state Xn Very much depends on description of states Markov Property Example Checkers: Current State: The current configuration of the board Contains all information needed for transition to next state Thus, each configuration can be said to have the Markov property Markov Chain Discrete-time stochastic process with the Markov property Industry Example: Google’s PageRank algorithm Probability distribution representing likelihood of random linking ending up on a page Markov Decision Process (MDP) Discrete time stochastic control process Extension of Markov chains Differences: Addition of actions (choice) Addition of rewards (motivation) If the actions are fixed, an MDP reduces to a Markov chain Description of MDPs Tuple (S, A, P(.,.), R(.))) S - state space A - action space Pa(s, s’) = Pr(st+1 = s’ | st = s, at = a) R(s) = immediate reward at state s Goal is to maximize some cumulative function of the rewards Finite MDPs have finite state and action spaces Simple MDP Example Recycling MDP Robot Can search for trashcan, wait for someone to bring a trashcan, or go home and recharge battery Has two energy levels – high and low Search

文档评论(0)

***** + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档