基於离散余弦转换之语音特徵的强健性补偿法.PDFVIP

基於离散余弦转换之语音特徵的强健性补偿法.PDF

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基於离散余弦转换之语音特徵的强健性补偿法

基於離散餘弦轉換之語音特徵的強健性補償法 Compensating the speech features via discrete cosine transform for robust speech recognition Hsin-Ju Hsieh 謝欣汝, Wen-hsiang Tu 杜文祥, Jeih-weih Hung 洪志偉 暨南國際大學電機工程學系 Department of Electrical Engineering, National Chi Nan University Taiwan, Republic of China E-mail: .tw, aero3016@, jwhung@.tw Abstract In this paper, we develop a series of algorithms to improve the noise robustness of speech features based on discrete cosine transform (DCT). The DCT-based modulation spectra of clean speech feature streams in the training set are employed to generate two sequences representing the reference magnitudes and magnitude weights, respectively. The two sequences are then used to update the magnitude spectrum of each feature stream in the training and testing sets. The resulting new feature streams have shown robustness against the noise distortion. The experiments conducted on the Aurora-2 digit string database reveal that the proposed DCT-based approaches can provide relative error reduction rates of over 25% as compared with the baseline system using MVN-processed MFCC features. Experimental results also show that these new algorithms are well additive to many noise robustness methods to produce even higher recognition accuracy rates. I. Introduction Most of the state-of-the-art automatic speech recognition (ASR) system developed in the laboratory, in which the speech is not obviously distorted, can achieve excellent recognition per- formance. But in the real-world application, the recognition accuracy is seriously degraded due to so many distortions or variations existing in the application environment. Particularly spea

文档评论(0)

ldj215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档