- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A new learning algorithm for blind signal separation-英文文献
A New Learning Algorithm for Blind
Signal Separation
s. Amari* A. Cichocki
University of Tokyo Lab. for Artificial Brain Systems
Bunkyo-ku, Tokyo 113, JAPAN FRP, RIKEN
amari@sat.t.u- tokyo.ac.jp Wako-Shi, Saitama, 351-01, JAPAN
cia@kamo.riken.go.jp
H. H. Yang
Lab. for Information Representation
FRP, RIKEN
Wako-Shi, Saitama, 351-01, JAPAN
hhy@koala.riken .go.jp
Abstract
A new on-line learning algorithm which minimizes a statistical de-
pendency among outputs is derived for blind separation of mixed
signals. The dependency is measured by the average mutual in-
formation (MI) of the outputs. The source signals and the mixing
matrix are unknown except for the number of the sources. The
Gram-Charlier expansion instead of the Edgeworth expansion is
used in evaluating the MI. The natural gradient approach is used
to minimize the MI. A novel activation function is proposed for the
on-line learning algorithm which has an equivariant property and
is easily implemented on a neural network like model. The validity
of the new learning algorithm are verified by computer simulations.
1 INTRODUCTION
The problem of blind signal separation arises in many areas such as speech recog-
nition, data communication, sensor signal processing, and medical science. Several
neural network algorithms [3, 5, 7] have been proposed for solving this problem.
您可能关注的文档
- A Learning Algorithm for Continually Running Fully Recurrent Neural Networks-英文文献.pdf
- A Limited Memory Algorithm for Bound Constrained Optimization-英文文献.pdf
- A Long-Memory Property of Stock Market Returns and a New Model-英文文献.pdf
- A message ferrying approach for data delivery in sparse mobile ad hoc networks-英文文献.pdf
- A learning algorithm for Boltzmann machines-英文文献.pdf
- A Meta-Analytic Review of Experiments Examining the Effects of Extrinsic Rewards on Intrinsic Motivation-英文文献.pdf
- A Model of Saliency-based Visual Attention for Rapid Scene Analysis-英文文献.pdf
- A New Extension of the Kalman Filter to Nonlinear Systems-英文文献.pdf
- A New Kind of Science-英文文献.pdf
- A Morphable Model For The Synthesis Of 3D Faces-英文文献.pdf
文档评论(0)