电感耦合等离子体(ICP).doc

  1. 1、本文档共100页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
电感耦合等离子体(ICP)

二十世纪初期以后光谱学由于它检出限的限制,作为发现新元素的时期已经过去了,质谱仪的出现可以更有效地测出各种微量元素。而对化学家来讲,光谱分析作为一个测量样品中微量杂质的手段是有效的。但作为光谱分析的定量分析直到1925年吉拉赫(Gerlach)首先提出了谱线的相对强度的概念,即用内标法来进行分析,提高了光谱分析的精密度和准确度,为光谱定量分析奠定了基础。 在二十世纪70-80年代,一些新的光源(如等离子体,辉光放电等)的研究成功,以及广泛地应用光电直读和电子计算机联用,进一步提高了光谱分析的精密度和准确度,实现了自动化。使光谱定量分析在现代分析化学中占有极其重要的地位。 第一部分 ICP-AES的基体原理 1. 原子光谱的理论基础 光谱分析是根据物质的特征光谱来研究物质的化学组成、结构和存在状态的一类分析领域,它可分为原子发射光谱分析、原子吸收光谱分析、分子发射光谱分析、分子吸收光谱分析、X射线荧光光谱分析、原子和分子荧光光谱分析、红外和拉曼光谱分析等各类分析方法。 原子发射光谱分析是根据试样物质中气态原子(或离子)被激发以后,其外层电子辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。常称为光谱化学分析,也简称为光谱分析。 1. 1 原子的结构和辐射跃迁 原子光谱是原子内部运动的一种客观反映,原子光谱的产生与原子的结构密切有关。在原子光谱分析时,最被关心的是光谱线波长的选择,以及所选光谱线的强度,而谱线的波长以及影响谱线强度的因素与原子结构密切相关。因此,一个光谱分析工作者有必要对原子结构及辐射跃迁过程有所了解。 早在19世纪中,人们已积累了一些原子光谱的实践知识。Bunsen及Kirchhoff最先将分光镜应用于元素的鉴定及分析,并将元素与特征谱线相联系,认识到线光谱是原子发射的。 1913年Bohr提出了原子结构学说,其要点如下: 电子绕核作圆周运行,可以有若干个分立的圆形轨道,在不同轨道上运行的电子处于不同的能量状态。在这些轨道上运行的电子不辐射能量,即处于定态。在多个可能的定态中,能量最低的态叫基态,其它称为激发态 原子可以由某一定态跃迁至另一定态。在此过程中发射或吸收能量,两态之间的能量差等于发射或吸收一个光子所具有的能量,即 h(=E2-E1 上式称为Bohr频率条件。式中,E2 ( E1。如E2为起始态能量,则发射辐射;如E2为终止态能量,则吸收辐射。h为planck常数(6.6262×10-34J·S)。 原子可能存在的定态只能取一些不连续的状态,即电子只能沿着特定的轨道绕核旋转。在这些轨道上,电子的轨道运动角动量P(必须等于h/2(的正整数倍。即 P(= n·h/2( (n=1,2,3(() 此式称为Bohr量子化规则,n称为主量子数据。 Bohr的原子结构学说以及以后的量子力学逐步完善了原子的结构理论。人们认识到:电子在能级间的跃迁时就产生谱线。若电子由低能级向高能级跃迁时就产生吸收光谱,电子由高能级向低能级跃迁时,就产生发射光谱。 例如右图所示的钠离子有高于基态2.2ev和3.6ev的两个激发态(ev为“电子伏特”,表征能量高低),当处于基态的钠原子受外界能量激发时,原子核外的电子跃迁到高能级的激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其他较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,2.2ev和3.6ev的能量的激发态回到基态分别发射589.0nm和330.3nm的谱线。核外电子从第一激发态返回基态时所发射的谱线称为第一共振发射线。由于基态与第一激发态之间的能级差异最小,电子跃迁几乎最大,故共振发射线最易产生,对多数元素而讲,它是所有发射谱线中最灵敏的(如钠的589.0nm),在原子发射光谱分析中通常以共振线为分析线。 1. 2 原子的激发和电离 不同的原子具有不同的能级,在一般的情况下,原子处于能量最低的状态,即基态,当电子或其他粒子与原子相互碰撞,如果其动能稍大于原子的激发能,就可使该气态原子获得一定的能量,从原子的基态过渡至某一较高能级,这一过程叫做激发。 使原子由基态跃迁到较高能级(即激发态)所需的能量称激发能,以电子伏(ev)表示。从原子能级图可以看出,原子可以被激发到不同的高能级。不同的高能级都有其固定的能量即激发电位。激发能最低的能级(第一激发态)所对应的能量为该原子的第一共振电位,由于其激发能最小,最容易被激发至该能级,因此第一共振线在元素中经常是最强的谱线,常被用作光谱定性分析的灵敏线及低浓度光谱定量分析的分析线。 当电子或其他粒子与原子相互碰撞时,如果其能量大于原子的电离能,则它们相互碰撞时就可能使气态原子电离成气态的一级离子,如果能量更大,还可使离子处于激发态,甚至更进一步变成二级、三级等高

文档评论(0)

huayagonga + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档