【2017年整理】热成型工艺焊接性能研究.doc

【2017年整理】热成型工艺焊接性能研究.doc

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
【2017年整理】热成型工艺焊接性能研究

超高强热成型钢板的点焊工艺性能研究 徐松,黄治军,孙宜强,胡宽辉,龚涛 (武汉钢铁(集团)公司研究院,湖北?武汉430080) 摘?要:对试验用超高强热成型钢的电阻点焊工艺进行了研究,探讨了焊接电流对点焊接头压痕深度、焊核直径、焊透率以及拉断力的影响规律,讨论了电流模式对点焊试样断裂点位置和中心偏析的影响,分析了焊接接头软化区、中心偏析的原因。研究结果表明,该钢种具有良好的点焊性能。 关键词:超高强钢;热成型钢;点焊;接头软化 随着对环境问题的重视和低油耗、低排放、高安全性的需求,汽车用钢向更轻、更高强度的方向发展。20世纪90年代开始,JFE公司开始。780MPa级别以上的超高强钢研究开发,应用于抗冲击和碰撞的汽车结构件,如加强筋、B柱等。高强钢板、超高强钢板成为汽车制造发展的主要方向[1-2]。 由于电阻点焊具有生产效率高、易于实现自动化等优点,在汽车制造中被广泛应用,成为高强钢板的主要焊接方法[3]。超高强钢板的点焊性能研究目前国内较少;对Aroelor公司生产的超高强度硼钢板USIBOR1500进行的点焊研究,证明了USIBOR1500超高强度淬火钢板具有良好的点焊性能[4-5]。 何谓热成型工艺?热成型工艺是将钢板加热到奥氏体温度区间(约900℃)进行热冲压,同时在模具内对冲压件快速冷却,淬火后得到细晶马氏体组织,从而可以得到抗拉强度达到1400MPa以上的钢板的工艺[6]。 本文研究的超高强钢板为某钢厂试验热成型钢F5D1,探讨了焊接电流对点焊接头性能的影响规律;通过不同电流模式下的焊接,讨论了坡周电流预热钢板对点焊的作用;针对接头软化和焊缝中心偏析,进行了显微硬度和金相组织的分析,并提出了改善措施和后续研究方向。 1试验材料及方法 1.1??试验材料 试验材料为某钢厂试验钢F5D1,该钢种通过热压成形、强冷淬火来提高强度,金相组织为淬火细晶马氏体,成分及性能见表1。试验用的钢板厚度为1.5mm。 1.2试验设备及方法 试验所用的点焊机为三相次级整流直流焊机TZ-3×40,电极直径为6mm,采用DEP-100S编程器设置焊接参数进行点焊工艺试验。??? 采用线切割的方法将点焊焊件沿过焊点中心的直线切割断面,随后将焊点断面试片经镶嵌后进行研磨、抛光,并用10%硝酸酒精溶液进行腐蚀,在金相显微镜下进行检测。在低倍下测量焊点的熔核直径以及焊透率。采用尖头千分尺测量试样的压痕深度。采用维氏硬度计在焊缝截面上进行显微硬度测量。 点焊接头拉伸剪切试验参照GWS5一A标准,试样尺寸为20mm×140mm×1.5mm。 2试验结果及分析 对F5D1采用2组工艺进行了工艺优化试验,电极压力30kgf,每周次0.02s。一组采用基本电流模式进行点焊,焊接时间10周;一组采用Slope电流模式进行点焊。Slope模式下,电流在3周次内从0 A线性递增到8400A,然后保持电流12周次。Slope模式下,前3周的电流对钢板有预热软化作用,在相同的电极压力下,钢板能更紧密的贴合,板面充分接触,电流更加稳定。 2.1??电流对压痕深度、熔核直径、焊透率及抗剪载荷的影响 通过优化后的工艺参数试验,探讨了电流对焊接接头的性能影响,如图1所示。 从图1(a)中可以看出,焊点的压痕深度随着焊接电流的增大,整体呈现出增加的趋势。但当电流达到某一临界值后,电流继续增大,压痕深度反而略微下降,并保持平稳趋势。 从图1(b)、(c)中可以看出,焊点的熔核直径和焊透率随焊接电流的变化规律基本相似。随着电流的逐渐增加,焊点的熔核直径、焊透率都呈现出上升趋势。电流达到某一临界值后,熔核直径和焊透率反而随着电流的增加出现下降。当焊接电流过大,热输入过大,熔核生长膨胀过快,塑性环在电极强冷作用下,生长速度有限,熔核突破塑性环约束,一部分金属喷出飞溅,一部分金属在电极强冷作用下凝固,导致熔核直径、焊透率降低。 从图1(d)中可以看出,焊点拉剪载荷随着焊接电流的逐渐增加,呈现出上升趋势。 原因在于,随着焊接电流的增加,热输入量逐渐增大,在不产生飞溅的情况下,焊点金属熔化更为充分,熔核温度更高,钢中自带硅铝酸盐以及与板间缝隙空气反应生成的氮化物、氧化物质点热扩散更为充分、分布更为均匀,从而提高了焊点的抗剪载荷。 此外,需特别提出的是,在Slpoe电流模式下焊接的试样,抗剪载荷试验中断裂点均在母材一侧,焊点四周破裂为“纽扣”状。基本电流模式下断裂点均在熔核处,熔核界面撕裂。这证明了,Slope模式下,坡周电流对钢板的预热软化作用能有效的控制断裂点位置,对抗剪载荷影响不大。2种模式下的抗剪载荷均在20kN左右,超过RMWA焊接标准中的A类参考抗剪强度(11.8kN),能够满足实际生产中的强度需求。 2.2金相组织分析 不同电流强度、不同电流模式下,F5D1试样焊点金相组织基本类

文档评论(0)

junzilan11 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档