硕士计量1 03 SimpleRegressionModel 2整理ppt.pptVIP

硕士计量1 03 SimpleRegressionModel 2整理ppt.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
硕士计量1 03 SimpleRegressionModel 2整理ppt

Recommended Homework 2.7, 2.9, C2.3 (data=Sleep75, 03年第一版无此题,请参考06年第三版), C2.5 (data=Rdchem, 03年第一版无此题,请参考06年第三版) Introduction to Multiple Regression Analysis Without specifying any functional forms, we can say that the rental price of a house in Beijing is a function of many factors Can you name a few? Prent =f(Size, #bed, #bath, Dists, Safty, Shopping, Entertainment , …) Or more general, Y=f(X1,X2,…) But for regression purpose, we assume: y = ?0 + ?1x1 + ?2x2 + . . .+?kxk + u Parallels with Simple Regression b0 is still the intercept b1 to bk all called slope parameters u is still the error term (or disturbance) Still need to make a zero conditional mean assumption, so now assume that E(u|x1,x2, …,xk) = 0 Still minimizing the sum of squared residuals, so have k+1 first order conditions Deriving the First Order Condition Let Setting the derivative of m wrt ?j to zero Meaning, for example ?j0 ^ Deriving the First Order Condition II From there, we can find, for example To have a compact expression for the ?j ‘s, without using matrix, we need to take a regression of each x’s on all other x’s, as shown next ^ If we regress the first x on all remaining x’s, then we can say that , where and ri,1’s are the said regression residuals The first order condition gave us earlier After substitution, it becomes ^ Let’s see what means Since xi1 are a linear function of all other x’s , so Furthermore, since ri1’s are the regression residuals, for all j1 also. Thus ^ ^ “Partialling Out” Interpretation This equation implies that regressing y on x1 and other x’s gives same effect of x1 as regressing y on residuals from a regression of x1 on other x’s This means only the part of xi1 that is uncorrelated with all other x’s are being related to yi so we’re estimating the effect of x1 on y after all other x’s has been “partialled out” In Matrix Form Since We have a nx1 matrix We want to find a (k+1)x1 vector b to minimize the sum squared re

文档评论(0)

zyzsaa + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档