R410A和R407C热力性质简化计算_0.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
R410A和R407C热力性质简化计算_0

R410A和R407C热力性质简化计算 摘要:采用隐式三次多项式拟合了R22主要替代工质R410A和R407C的热力性质,给出了形式统一的制冷剂热力性质简化模型, 分析 了隐式拟合过程中出现的分岔 问题 并提出了解决 方法 ,从而进一步完善了模型的一致性和稳定性。与 参考 模型比较,该模型在饱和区的相对误差绝对值的最大值为0.19,平均误差为0.07,过热区的相对误差绝对值的最大值为0.61,平均误差为0.18,算速度平均提高一个数量级,适用于基于 计算 机辅助设计的产品设计和优化计算。 关键词:制冷剂 R410A R407C 热力性质   制冷空调行业的各种探索和 研究 表明,混合工质在制冷工质替代中具有很大的潜力,其中R410A和R407C作为R22的替代物更是倍受瞩目.为了更好地研究它们对现有制冷系统的 影响 ,计算机仿真是个很好的手段.而热物性程序作为仿真程序的基础部分,对仿真计算的效率和结果有相当的影响.但国内在这方面的研究很少,一般直接采用复杂的状态方程进行迭代计算,这样在相当程度上降低了仿真的速度和稳定性.为了弥补这一不足,本文采用隐式拟合显式计算的方法,参照DuPont公司的数据,对R410A和R407C的热力性质重新拟合,结果可以避免迭代,在显著提高计算速度的同时又能保证所需的精度. 1 拟合模型   本文对根据 文献 [1,2]编制的热力性质程序进行简化,并以该热力性质程序作为拟合的参考数据源和检验简化热力性质的相对精度.饱和热力性质的简化模型采用了文献[3]提出的拟合函数形式:   对于过热区的热力性质,文献[4]没能给出形式完全统一的拟合函数.作者统一了过热区简化模型的形式,以便拟合和降低模型的复杂性,具体形式:   简化模型是在常用的制冷空调运行工况内进行简化,在饱和区-40~60°C和过热区-40~120°C内保证精度,在温度外推20°C范围内保证变化趋势,以确保仿真计算的正确进行. 2 隐式拟合的分岔问题和解决方法   隐式拟合的最大问题就是分岔问题.在隐式拟合方程向显式的计算方程转化时,涉及到根的判别问题.三次方程涉及到3个根,分别代表了不同的根轨迹.但最后需要的可能是其中一条或多条根轨迹组合而成.然而根轨迹的衔接处会出现很小的断裂,这便是分岔现象.断裂处称为分岔点,它造成曲线不连续(分岔点处误差大)和曲线不光滑(分岔点处一阶导数不连续).虽然分岔点的范围很小,在大部分情况下对制冷系统的仿真模型不会产生大的影响,但却是个巨大的隐患(可能导致仿真模型计算值的异常).   通过一系列的尝试,在不改变模型的前提下提出一种解决方法:通过改变拟合数据来调整拟合过程,把分岔点移出拟合范围,同时保证拟合精度.这一方法的数学原理是通过改变拟合数据点可以改变拟合函数的曲率.因此,只要令拟合函数在拟合范围内曲率变化减小,就可使分岔点(即曲率变化最大的点)外移.通过这种方法建立的模型在拟合范围内没有分岔问题,少数模型在外推范围内有分岔,但这对常见制冷空调工况范围内的系统仿真没有影响.具体方法:1改变拟合范围,通常是扩大拟合范围以保证拟合范围内的精度;2改变拟合的点数,大部分情况是减少点数;3用非均匀的数据点拟合(增加某区域内数据个数).相比之下,1对分岔点的位置影响最大,3则最小.从 目前 情况看,拟合数据范围、点数和分布的选择对不同的热力参数是不同的,在很大程度上取决于经验. 转贴于论文联盟 3 拟合结果与 计算 速度比较   拟合结果如表1~3所示.在表1和表3中,e1和e*1分别为在拟合范围和外推范围内,已知温度T,利用函数f(x,T)求物性x时最大相对误差的绝对值;e2和e*2分别为在拟合范围和外推范围内,已知物性x,利用函数f(x,T)求温度T时最大相对误差的绝对值;表中的T0和x0为实际拟合范围的左边界;对于x为防止拟合系数过大或过小而导致的计算困难,本文没有直接采用基本国际单位,而是采取一定的缩放比例,缩放比例在单位一栏中示出,例如表1中ρL的单位为(×103kg/m3),这说明表中系数是ρL在乘以10-3后拟合的后果.下标v表示饱和蒸汽,L表示饱和液体.   在表2中,e1和e*1分别为在拟合范围和外推范围内,已知压力p和温度T,求过热气体比容v、焓值h或熵值s时最大相对误差的绝对值;e2和e*2分别为在拟合范围和外推范围内,已知压力p和过热气体比容v、焓值h或熵值s,求过热气体温度T时最大相对误差的绝对值.   表4为简化模型和 参考 模型的计算速度结果比较.为了突出简化模型的优越性,故对于精确模型中没有迭代计算的函数不予比较,而只选出一些比较典型的函数来比较.为了准确地测量计算速度,每个函数都调用了上万次,最后得出每调用一次所需的平均时间,由表可见,简化模型在速度方面的优势非常明显. 4 结 

文档评论(0)

ayangjiayu13 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档