网站大量收购独家精品文档,联系QQ:2885784924

专题BI关联规则.pptVIP

  1. 1、本文档共41页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2001-11-6 数据挖掘:概念和技术 关联规则 引言 关联规则挖掘 从交易数据库中挖掘一维的布尔形关联规则 练习题 Frequent-Pattern tree(选讲) 什么是关联挖掘? 关联规则挖掘: 在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性、或因果结构。 应用: 购物篮分析、交叉销售、产品目录设计、 loss-leader analysis、聚集、分类等。 举例: 规则形式: “Body ? Head [support, confidence]”. buys(x, “diapers”) ? buys(x, “beers”) [0.5%, 60%] major(x, “CS”) ^ takes(x, “DB”) ? grade(x, “A”) [1%, 75%] 关联规则:基本概念 给定: (1)交易数据库 (2)每笔交易是:一个项目列表 (消费者一次购买活动中购买的商品) 查找: 所有描述一个项目集合与其他项目集合相关性的规则 E.g., 98% of people who purchase tires and auto accessories also get automotive services done 应用 * ? 护理用品 (商店应该怎样提高护理用品的销售?) 家用电器 ? * (其他商品的库存有什么影响?) 在产品直销中使用附加邮寄 规则度量:支持度与可信度 查找所有的规则 X Y ? Z 具有最小支持度和可信度 支持度, s, 一次交易中包含{X 、 Y 、 Z}的可能性 可信度, c, 包含{X 、 Y}的交易中也包含Z的条件概率 关联规则挖掘:路线图 布尔 vs. 定量 关联 (基于 处理数据的类型) buys(x, “SQLServer”) ^ buys(x, “DMBook”) ? buys(x, “DBMiner”) [0.2%, 60%] age(x, “30..39”) ^ income(x, “42..48K”) ? buys(x, “PC”) [1%, 75%] 单维 vs. 多维 关联 (例子同上) 单层 vs. 多层 分析 那个品种牌子的啤酒与那个牌子的尿布有关系? 各种扩展 相关性、因果分析 关联并不一定意味着相关或因果 最大模式和闭合相集 添加约束 如, 哪些“小商品”的销售促发了“大商品”的买卖? 关联规则 引言 关联规则挖掘 从交易数据库中挖掘一维的布尔形关联规则 练习题 Frequent-Pattern tree(选讲) 关联规则挖掘—一个例子 对于 A ? C: support = support({A 、C}) = 50% confidence = support({A 、C})/support({A}) = 66.6% Apriori的基本思想: 频繁项集的任何子集也一定是频繁的 关键步骤:挖掘频繁集 频繁集:是指满足最小支持度的项目集合 频繁集的子集也一定是频繁的 如, 如果{AB} 是频繁集,则 {A} {B} 也一定是频繁集 从1到k(k-频繁集)递归查找频繁集 用得到的频繁集生成关联规则 Apriori算法 连接: 用 Lk-1自连接得到Ck 修剪: 一个k-项集,如果他的一个k-1项集(他的子集 )不是频繁的,那他本身也不可能是频繁的。 伪代码: Ck: Candidate itemset of size k Lk : frequent itemset of size k C1={all Candidate itemset of size from Database}     L1={candidates in C1 with min_support} for (k = 1; Lk !=?; k++) do begin Ck+1 = candidates generated from Lk; for each transaction t in database do increment the count of all candidates in Ck+1 that are contained in t Lk+1 = candidates in Ck+1 with min_support end return ?k Lk; Apriori 够快了吗? — 性能瓶颈 Apriori算法的核心: 用频繁的(k – 1)-项集生成候选的频繁 k-项集 用数据库扫描和模式匹配计算候选集的支持度 Apriori 的瓶颈: 候选集生成 巨大的候选集: 104 个频繁1-项集

文档评论(0)

jdy261842 + 关注
实名认证
文档贡献者

分享好文档!

1亿VIP精品文档

相关文档