- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
withRegionProposalNetworks.PDF
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Microsoft Research v-shren, kahe, rbg, jiansun@ Abstract State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [7] and Fast R-CNN [5] have reduced the running time of these detection networks, exposing region pro- posal computation as a bottleneck. In this work, we introduce a Region Pro- posal Network (RPN) that shares full-image convolutional features with the de- tection network, thus enabling nearly cost-free region proposals. An RPN is a fully-convolutional network that simultaneously predicts object bounds and ob- jectness scores at each position. RPNs are trained end-to-end to generate high- quality region proposals, which are used by Fast R-CNN for detection. With a simple alternating optimization, RPN and Fast R-CNN can be trained to share convolutional features. For the very deep VGG-16 model [ 19], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007 (73.2% mAP) and 2012 (70.4% mAP) using 300 proposals per image. Code is available at /ShaoqingRen/faster_rcnn. 1 Introduction Recent advances in object detection are driven by the success of region proposal methods (e.g., [22]) and region-based convolutional neural networks (R-CNNs) [6]. Although region-based CNNs were computationally expensive as originally developed in [6], their
您可能关注的文档
- VGUS4.3设计入门-欢迎使用.PDF
- VideoGame.PDF
- VIPENTRYTICKET.PDF
- VirtualMicrocontrollers.PDF
- VISI-Electrode.pdf
- Visio2007完美教程.pdf
- Visitoptions.PDF
- VM-Series.PDF
- VMImportExport.PDF
- VMware考试认证流程6.0.pdf
- WIZnetW5200EthernetPICtail.PDF
- word-converter.netSD卡使用手册.PDF
- WordRelationsandWordSenseDisambiguation.docx
- WorldBankFinancedGansuCulturalandNaturalHeritage.doc
- WritingPersonalStatements.PDF
- WS-Security.ppt
- XIAMETER(R)ECE-3650SYLGARD高压绝缘涂.PDF
- XIAMETER(R)OFS-6945硅烷.PDF
- XiaomanPan.PDF
- XML和RDF异构数据源的语义集成和检索.PDF
文档评论(0)