- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
CoxRegressionII
Satistics 262 Cox Regression II Monday “Gut Check” Problem… Write out the likelihood for the following data, with weight as a time-dependent variable: SAS code for a time-dependent variable… proc phreg data=example; model time*censor(0) = weight; if time3 then weight=w0; if time=3 and time6 then weight=w3; if time=6 and time9 then weight=w6; if time=9 then weight=w9; run; Model results Using baseline weight: HR=2.8 Using weight as time-changing variable: HR=9.3 Males: 1, 3, 4, 10+, 12, 18 (subjects 1-6) Females: 1, 4, 5, 9+ (subjects 7-10) The PL Age is a common confounder in Cox Regression, since age is strongly related to death and disease. You may control for age by adding baseline age as a covariate to the Cox model. A better strategy for large-scale longitudinal surveys, such as NHANES, is to use age as your time-scale (rather than time-in-study). You may additionally stratify on birth cohort to control for cohort effects. Age as time-scale The risk set becomes everyone who was at risk at a certain age rather than at a certain event time. The risk set contains everyone who was still event-free at the age of the person who had the event. Requires enough people at risk at all ages (such as in a large-scale, longitudinal survey). The likelihood with age as time 3. Residuals Residuals are used to investigate the lack of fit of a model to a given subject. For Cox regression, there’s no easy analog to the usual “observed minus predicted” residual of linear regression Martingale residual ci (1 if event, 0 if censored) minus the estimated cumulative hazard to ti (as a function of fitted model) for individual i: ci-H(ti,Xi,??i) E.g., for a subject who was censored at 2 months, and whose predicted cumulative hazard to 2 months was 20% Martingale=0-.20 = -.20 E.g., for a subject who had an event at 13 months, and whose predicted cumulative hazard to 13 months was 50%: Martingale=1-.50 = +.50 Gives excess failures. Martingale residuals are not s
您可能关注的文档
- ADS签证申请审核表.PDF
- AMSCHINA月刊第1107期.doc
- Adiscriminativemethodforproteinremotehomology.ppt
- AmericanLanguageInstitute.PDF
- AlgorithminWebTopicDetection.PDF
- AlanBachers,Ph.D.ppt
- ApplicationGuide.PDF
- ASCCMATLAB软体公共服务申请书.PDF
- ActivationforDepressionandPTSDAmyWagner,Ph.D.ppt
- AA000009信令传输协议--SIGTRAN协议.ppt
- CrispinHayesPierce,Ph.D.UniversityofWisconsin-EauClaire.ppt
- CSRNewsletter.PDF
- CONTENTdmwithaDatabaseSusanHamburger,Ph.ppt
- CZRBA03A03C-学点诗词润瘦知.PDF
- Dermatitedupied(FPD)etbrluredujarret(HB)chezlepoulet.ppt
- CS525ISFETpHProbe.PDF
- DNA-PROTEININTERACTIONS.ppt
- Dearvaluedcustomer,.PDF
- DepartmentofMedicineAnnualReviewtoFaculty.ppt
- DNA鉴定将确定青海无人区遗骸身份.PDF
文档评论(0)