强跟踪平方根容积卡尔曼滤波和自回归模型融合的故障预测.PDF

强跟踪平方根容积卡尔曼滤波和自回归模型融合的故障预测.PDF

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
强跟踪平方根容积卡尔曼滤波和自回归模型融合的故障预测

31 8 Vol. 31 No. 5 2014 8 Control Theory Applications Aug. 2014 DOI: 10.7641/CTA.2014.30963 , , , (1. , 050003; 2. , 100085) : , (STSCKF)(AR). AR, STSCKF, . STSCKF , SCKF , STSCKF. (CSTR) , STSCKFSCKF(STUKF), . : ; ; ; (SCKF); : TP273 : A Fault prediction with combination of strong tracking square-root cubature Kalman filter and autoregressive model DU Zhan-long , LI Xiao-min , ZHENG Zong-gui , MAO Qiong (1. Department of UAV Engineering, Ordnance Engineering College, Shijiazhuang Hebei 050003, China; 2. Academe of Second Artillerist, Beijing 100085, China) Abstract: To deal with the problem of prognosis of unmeasured parameters in nonlinear systems, we propose a fault prediction algorithm which is a combination of the strong tracking square-root cubature Kalman filter (STSCKF) with suboptimal fading factor and the autoregressive (AR) model. Future time values of measurement variables are forecasted by using the AR model time series prediction method; and then, the predicted values are used as STSCKF measurement variables. Thus, the prognostic problem is transformed into a filter estimation issue. The fading factor is introduced into the square root of the STSCKF prediction error covariance for adjusting the gain matrix in the filter process. As a result, STSCKF eliminates the disadvantage of slow tracking or even unable tracking of fault parameters in conventional SCKF when the time-varying functions of fault parameters are unknown, improving the ca

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档