车牌识别,报告(共9篇).docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
车牌识别,报告(共9篇)

车牌识别,报告(共9篇) :车牌 识别 报告 小区车牌识别系统破解 车牌号查询 车牌识别门禁如何破解 篇一:车牌识别系统报告 车牌识别系统-------MATLAB 林加伟 (电子信息工程学号:104173424) 摘要:通过对车牌定位,车牌字符分割和车牌字符识别进行研究,实现一种可以在MATLAB上实现的算法。 关键字:图像预处理,车牌定位,字符分割,车牌字符识别 引言 当今世界,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。作为信息来源的图像识别技术越来越受到人们的重视。近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度。 1. 统框架结构 汽车车牌识别系统主要包括图像预处理、车牌定位、字符分割、字符识别、输出结果几个单元。 2. 各模块实现 2.1图像预处理 2.1.1图像灰度化: 因为车牌识别系统的摄像头拍摄的图片是彩色的,彩色图片会占用较大的存储空间,使计算机处理速度变慢,加重计算机负担,所以我们要对拍摄的照片进行灰度化处理。 对于将彩色图像转换成灰度图像时, 目前比较主流的灰度化方法叫平均值法,公式为: H=0.229R+0.588G+0.144B 公式中H表示灰度图的亮度值;R代表彩色图像红色分量值;G代表色彩图像绿色分量值;B代表彩色图像蓝色分量值。RGB 三分量前的系数为经验加权值。加权系数的取值建立在人眼的视觉模型之上。对于人眼较为敏感的绿色取较大的权值; 对人眼较为不敏感的蓝色则取较小的权值。通过该公式转换的灰度图能够比较好地反应原图像的亮度信息。 在MATLAB中我们可以调用im2gray函数对图像进行灰度化处理。 语句如下: 结果: 2.1.2边缘提取 边缘是指图像局部亮度变化显著的部分,是图像风、纹理特征提取和形状特征提取等图像分析的重要基础。所以在此我们要对图像进行边缘检测。图象增强处理对图象牌照的可辩认度的改善和简化后续的牌照字符定位和分割的难度都是 很有必要的。在对边缘进行提取前,可通过提取图像背景后,原图减去背景,对图进行二值化等方式增强图片对比度。 现机动车车牌图像都处在水平的矩形区域,在图像中位置较为固定,车牌中字符都是按水平方向排列。因为有这些明显的特征,经过适当的图像变换,可以清晰的呈现出车牌的边缘。本文采用经典的Canny边缘检测算子来对图像进行边缘检测。检测出边缘后再用imopen和imclose对所得二值图像做滤波。 程序如下 2.1.3车牌定位 自然环境下,汽车图像背景复杂,光照不均匀,在自然背景中准确地确定牌照区域是整个图像识别过程中的关键。首先对采集到的图像进行大范围相关有哪些信誉好的足球投注网站,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳区域作为牌照区域,将其从图像中分割出来。算法流程如下: (1) 对二值图像进行区域提取,计算并比较区域特征参数,提取车牌区域。 (2) 计算包含所标记区域的宽和高,选出候选区,求出每个候选区的宽高比。2007 年实施的车牌标准规定,车前车牌长 440mm,宽140mm。其比例为440 /140=3.15。所以在选出候选区中要找出宽高比最接近此比例的区域。 程序如下 结果 2.1.4车牌进一步处理 经过上述方法分割出来的车牌图像中存在目标物体、背景还有噪声,要想从图像中直接提取出目标物体,最常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群,即对图像二值化。均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素。再用模板中的全体像素的平均值来代替原来像素值。 篇二:车牌识别实验报告 数字图像处理在车牌识别中的应用 摘 要 随着汽车数量在我国大面积的增加,城市交通状况逐渐受到人们的重视,如何进行有效的交通管理更是成为了人们关注的焦点。 针对此问题,人们运用新的科学技术,相继研制开发出了各种交通道路监视、 管理系统。因此,智能交通系统已成为世界交通领域研究的重要课题。车牌识别系统作为智能交通系统的核心,起着非常关键的作用。目前,图像处理技术在车牌识别中的应用研究已经成为科学界的一个重要研究领域。 本文旨在粗浅的运用所学基本原理和知识分析数字图像处理技术在友好环境下的应用(所选车牌识别的车辆图片均为友好环境下,易于处理的实验图片,不具有广泛性)。以车牌为研究对象,主要研究如何通过图像的预处理、车牌的定位、车牌字符分割和字符识别等一系列过程,完成车牌的识别。

文档评论(0)

1045141460 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档