- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据挖掘和恶意软件检测要点
数据挖掘和恶意软件检测
201-11-20
摘 要: 关键字: 特征提取分类
Data mining and malware detectionAbstract: With the development of computer network and improvement of malware programming, traditional malware detection methods seem obviously inadequate, failing to satisfy the need of people for information security. The malware detection based on behavior is a method which achieves detection through making use of the peculiar behavior features of malware. It does well in detecting the unknown malware. This malware detection technique could be adjusted to the emerging new features of malware, which has great superiority and broad space for development undoubtedly. Consequently, it could be the development tendency of malware detection in a long time. This article describes malware detection based of static analysis ,and malware detection based on dynamic behavior analysis ,and describes their pros and cons.
Key words: Data mining;Malware detection ; Feature extraction ;Static analysis ;Dynamic behavior analysis ;Classification
随着社会信息化程度的不断提高,工业、国防、教育、金融等社会各行各业的信息越来越依赖于计算机和互联网。然而频繁发生的网络安全事件给人们敲了安全警钟。计算机与网络安全问题正成为人类信息化所面临的巨大挑战,直接威胁着个人、企业和国家的利益。而目前计算机与网络安全的主要威胁隐患之一就是恶意程序。近年来,随着编程技术的普及,恶意程序制作的门槛逐步降低,恶意程序的制作呈现机械化、模块化和专业化特征。在恶意程序灰色产业链带来的巨大利益的驱使下,恶意程序产业正朝着规模化发展。恶意程序的爆炸式增长,在使企业及用户遭受到巨大的经济损失的同时,也给恶意程序分析人员带来了巨大的工作压力。传统的恶意程序分析技术已经远远不能满足新的安全需求。一方面,基于特征码的恶意程序分析技术,需要对每一个恶意程序的特征码进行提取,对于目前每天有成千上万的恶意程序产生的情况,提取特征码的工作量是巨大的且效率不高。另一方面,用户端需要定期的升级必威体育精装版的病毒库,随着新恶意程序的爆炸式增长,病毒特征库的容量也要大幅增长,长此以往会拖累检测分析系统的速度。因此如何对新的恶意程序样本快速地进行检测和分类,已成为越来越多的专业计算机安全厂商所关注的焦点。
1恶意软件和检测的现状
近年来,随着编程技术的普及,恶意程序制作的门槛逐步降低,恶意程序的制作呈现机械化、模块化和专业化特征。在恶意程序灰色产业链带来的巨大利益的驱使下,恶意程序产业正朝着规模化发展。从2008 年开始恶意程序大规模爆发,每年新增木马病毒等恶意程序数量级从数十万级跃升至千万级。
图 1
Fig 1 Increased volume of malware from 2003 to 2010
自从恶意程序出现以来,恶意程序的检测技术一直是计算机安全领域关注的焦点。根据恶意程序分析工具技术模块不同,恶意程序检测方法通常分为静态和动态方法。在静态方法领域,2001 年,在文件二进制特征检测的基础上首次提出了基于数据挖掘的恶意程序检测方法[];之后,借鉴入侵检测、恶意程序检测与分类系统设计与实现中的常用方法,越来越多的研究集中在利用数据挖掘方法对恶意程序二进制文件信息进行学习建模,然后将学习到的模型用于未知恶意程序的检测。MihaiChristodorescu在恶意程序静态分析[]方法上提出了使用有限状态机对恶
文档评论(0)