文本情感剖析-让机器读懂人类情感.docxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
文本情感剖析-让机器读懂人类情感

文本情感分析:让机器读懂人类情感 1 ?引言 在大数据和人工智能的时代,机器能否拥有情感成为人们热议的话题。真正的人工智能系统不仅具有像人类的思考和推理能力,也需要也要能够感知和表达情感。MIT 的Minsky ?(人工智能之父)早在 1985年在“The Society of Mind”中指出“问题不在于智能机器能否拥有任何情感 ,而在于机器实现智能时怎么能够没有情感?”。赋予机器情感分析能力引起了社会的广泛关注,研究领域也开展了很多相关的研究工作。科幻电影《她》中人工智能系统和主人公谈恋爱的故事,激发了人们对机器具有人类情感的无限想象。那么,机器是怎样理解人类情感呢?通常来讲,机器理解人类情感是一个多模态的感知过程,通过表情、行为、语言来理解情感。语言通常以文本的形式存在,本文主要是从文本的角度讨论情感分析的研究。 2 ? ?文本情感分析定义 文本情感分析([1],[2])是自然语言处理研究的一个热点,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。按 照Liu[2]对 情 感 的 定 义,情 感 表 达 由 四个元素构成,分别是[Holder,Target,Polarity,Time],其中文本发表的时间通常可以使用简单的规则获取,因此情感分析的目标通常是从无结构的文本中自动分析出Holder(观点持有人)、Target(评价对象)、Polarity(极性)三元素。Holder是观点的发出者;Target是该观点评价的对象(如实体或实体的属性,或者话题);Polarity是所表达的情感类别,由于任务不同,情感类别体系会不同,通常包括褒贬、褒贬中、喜怒哀乐悲恐惊、情感打分(如1-5分)等分类体系。文本中的情感又分为显式情感及隐式情感,显式情感是指包含明显的情感词语(例如高兴、漂亮)情感文本,隐式情感是指不包含情感词语的情感文本,例如“这个桌子上面一层灰”。由于隐式情感分析难度比较大,比较依赖于背景知识及常识知识,目前许多工作集中在显示情感分析研究。 目前的情感分析研究可归纳为:情感资源构建、情感元素抽取、情感分类及情感分析应用系统,具体见图1。 图1 情感分析研究框架 3 情感分析研究任务 情感分析任务和其他自然语言处理任务一样,首先需要资源的支持,在此基础上,开展情感分析元素抽取以及文本情感分类工作,下面我们将进行简要介绍。 3.1 ? ?文本情感资源构建 情感资源一般包括情感词典和情感语料库。 目前人工构建情感词典较多的是收集了褒贬情感词的词典,如哈佛大学GI(General Inquiry)情感词典 、匹兹堡大学提供的OpinionFinder主观情感词典 、伊利诺伊大学Bing Liu提供的词典资源 ,而对于喜、怒、哀、乐、悲、恐、惊等情感相应的词典还比较少,英语中主要有WordNet-Affect,随后有不少学者基于WordNet-Affect又陆续扩展到其他语言。由于是人工构建,上述词典规模基本都在几千词范围内。在中文方面,大连理工大学的情感词汇本体 将情感分为七个基本大类和二十一个小类,收录情感词语27466条。 可以看到,人工构建词典需要较大的代价,规模也会受限。(人们开始研究自动构建情感词典的方法,已有方法一般分为两种:基于词典资源和基于语料库的方法。基于词典资源的方法通常利用外部语义词典(如WordNet)中词语之间的语义关系(如同义词、反义词、上位词关系等)生成情感词典;Hu and Liu[3]借助WordNet中的同义词和反义词信息判断形容词的情感极性;Esuli et al.[4]利用同义词集合的注释信息自动构建了情感词典资源SentiWordNet。基于语料库的情感词典构建方法最早源自Hatzivassiloglou和McKeown[5];Google的Velikovich et al.[6]在大规模互联网语料上利用上下文计算词语之间的语义关联构建情感词典,最终获得了大规模(17万左右)的情感词典;Mohammad et al.[7]在Twitter数据上自动构建大规模情感词典,他们人工定义表情符和hashtag的情感种子集合,利用词语和情感种子的点互信息计算情感分值,获得了6.2万情感词语,67万情感短语(Bigram)。 值得一提的是,情感分析的语料库和相关评测也对推动情感分析的进步至关重要。国际TREC、NTCIR,SemEval组织的面向不同任务的情感分析评测以及国内中文信息学会及中国计算机学会相继连续举办中文情感分析评测,促进同行的交流和学习,同时针对不同情感分析任务提供了大量的人工标注语料库。当然,人工标注语料库的领域、规模都会受到一定限制。利用distant supervision方法从评论网站(如Yelp、IMDB)或社交媒体上(如Twitter)自动获取的情感

文档评论(0)

jdy261842 + 关注
实名认证
文档贡献者

分享好文档!

1亿VIP精品文档

相关文档