基于聚类权的SVM解不平衡数据集分类.pdfVIP

基于聚类权的SVM解不平衡数据集分类.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于聚类权的SVM解不平衡数据集分类

Computer Engineering and Applications 计算机工程与应用 2015 ,51(21 ) 133 基于聚类权重分阶段的SVM 解不平衡数据集分类 1 1 2 王超学 ,张 涛 ,马春森 1 1 2 WANG Chaoxue , ZHANG Tao , MA Chunsen 1.西安建筑科技大学 信息与控制工程学院,西安 710055 2.中国农业科学院 植物保护研究所,北京 100193 1.School of Information and Control Engineering, Xi ’an University of Architecture and Technology, Xi ’an 710055, China 2.China Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China WANG Chaoxue, ZHANG Tao, MA Chunsen. Resolution of classification for imbalanced dataset based on clus- ter-weight and grading-SVM algorithm. Computer Engineering and Applications, 2015, 51 (21 ):133-137. Abstract: Based on analyzing the shortages of SVM (Support Vector Machine)algorithm in solving classification problems on imbalanced dataset, a novel SVM approach based on cluster-weight technology and based-grading SVM classifier (short as WSVM )is presented in this paper that considers the uneven distribution of training sample between classes and within classes. The specific steps are as follows :when preprocessing, it uses K -means algorithm based on weight assignment model to obtain the weights of the majority samples. Classification is consisted of three phases. It selects the located in each cluster boundary majority samples, which is equal with the minority samples in quantity, then classifies the minority samples and selects samples, and adjusts the initial classifier through the unselected majority samples. When it comes to satisfy the explicit stopping criteria, the final classifier is got. A large amount of experiments by the UCI dataset show that WSVM can significantly improve the identification rate of the minority samples and overall classification performance. Key words: imbalanced dataset; weight assignment model; Support Vector Machine (SVM

文档评论(0)

jiupshaieuk12 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:6212135231000003

1亿VIP精品文档

相关文档