linux物理內存管理.docxVIP

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
linux物理內存管理

Linux的内存管理是一个非常复杂的过程,主要分成两个大的部分:内核的内存管理和进程虚拟内存。内核的内存管理是Linux内存管理的核心,所以我们先对内核的内存管理进行简介。 一、物理内存模型 物理内存模型主要分为两种:UMA(Uniform Memory Access)和NUMA(Non-Uniform Memory Access)。UMA模型是指物理内存是连续的,SMP系统中的每个处理器访问各个内存区都是同样快的;而NUMA模型则是指SMP中的每个CPU都有自己的物理内存区,虽然CPU可以访问其他CPU的内存区,但是要比方位自己的内存区慢得多。我们一般使用的物理模型都是UMA模型。为了NUMA模型,Linux提供了三种可能的内存布局配置:Flat Memory, Sparse Memory, Discontiguous Memory。 Flat Memory就是简单的线性组织物理内存,一般没有内存空洞的UMA架构都采用这种配置。对于NUMA模型,一般只能采用后两者,而后两者的区别主要在于:Sparse Memory配置一般认为是试验性的,不是那么稳定,但是有一些新的功能和性能优化,而Discontiguous Memory配置一般认为是稳定的,但不具有内存热插拔之类的新特性。 二、物理内存组织 物理内存的组织主要分为两个部分:节点(node)和内存与内存域(zone)。node主要针对NUMA设计,在NUMA的SMP系统中,每个处理器都有一个自己的node,而在UMA模型中则只有一个node。对于每个node中的内存,Linux分成了若干内存域,定义在mmzone.h的zone_type中,常用的有ZONE_DMA、ZONE_DMA32、ZONE_NORMAL、ZONE_HIGHMEM和ZONE_MOVABLE。其中ZONE_NORMAL是最为常用的,表示内核能够直接映射的一般内存区域;ZONE_DMA表示DMA内存区;ZONE_DMA32表示64位系统中对于32位DMA设备使用的内存;ZONE_HIGHMEM表示在32位系统中,高地址内存的区域;ZONE_MOVABLE与伙伴系统的内存碎片消除有关。后文会详细介绍相关部分。 在物理内存管理过程中有一些名词: Page Frame(页帧,或称页框):是系统内存管理的最小单位,系统中每个页框都是struct page的一个实例。IA-32系统的页框大小是4KB。 Hot-n-Code Pages(冷热页):是指内存管理中对页框的分类,访问较多的或者近期访问的为热页,否则为冷页。该标记主要与内存换出(memory swap)相关。 Page Table(页表):是内存寻址过程中的辅助数据结构。层次化的页表对于大地之空间的快速、高效管理很有意义。Linux一般支持四级页表:PGD(Page Global Directory)、PUD(Page Upper Directory)、PMD(Page Middle Directory)和PTE(Page Table Entry)。IA-32体系中默认只是用了两级分页系统,即只有PGD和PTE。 三、X86架构下的内存布局 内核在内存中的布局 Linux的内核在初始化的时候会被加载到内存区的固定位置(在此我们不讨论可重定位内核的情况),而内核所占用的内存区域的布局是固定的,如图: 内存第一个页框不实用,主要被BIOS用来初始化;之后的连续640KB内存也不被内核使用,主要用来映射各种ROM(通常是BIOS和显卡ROM);再之后的空间是闲置的,原因是内核要被放在连续的内存空间。在0x100000开始为内核部分,分别是代码段、数据段和附加段。 IA-32架构的布局 IA-32架构可以访问4GB的地址空间(不考虑PAE),常规情况下会将4GB线性空间划分成3:1的两部分:低地址的3/4部分为用户空间,而高地址的1GB是内核空间,即内核地址空间从偏移量0xC0000000开始,每个虚拟地址x都对应于物理地址x-0xC0000000。这样的设计加快了内核空间寻址的速度(简单的减法操作)。在进程切换的过程中,只有用户空间的低3GB内存对应的页表会被切换,高地址空间会公用内核页表。 IA-32架构的这种设计存在着一个问题:既然内核只能处理1GB的空间(事实上,内核处理的空间还不足1GB,后面会详细说明),那么如果物理内存大于1GB,剩下的内存将如何处理?这种情况下,内核将无法直接映射全部物理内存,这样就用到了上面所说的高地址内存域(ZONE_HIGHMEM)。具体的内存分配如下图: 能够看到内核区域的映射从__PAGE_OFFSET(0xC00000)开始,即3GiB位置开始映射到4GiB,开始的一段用来直接映射,而后

文档评论(0)

sheppha + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5134022301000003

1亿VIP精品文档

相关文档