USER-第4章电感式传感器.ppt

  1. 1、本文档共46页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
USER-第4章电感式传感器.ppt

第4章 电感式传感器 ;第一节 变磁阻式传感器;由磁路基本知识知,线圈自感为;由于自感传感器的铁芯一般在非饱和状态下,其磁导率远大于空气的磁导率,因此铁芯磁阻远较气隙磁阻小,所以上式可简化为 ;设衔铁处于起始位置时, 传感器的初始气隙为δ0。 初始电感为; 当 时, 可将上式展开成级数; 可以看出, 当忽略高次项时, ΔL才与Δδ成线性关系。 当然, Δδ/δ0 越小, 高次项迅速减小, 非线性可得到改善。 然而, 这又会使传感器的量程变小。 所以, 对输出特性线性度的要求和对测量范围的要求是相互矛盾的, 一般对变气隙长度的传感器, 取Δδ/δ0=0.1~0.2。;二、变面积自感传感器;三、螺管式自感传感器;四、差动自感传感器; 铁 芯;五、测量电路;上图的等效线圈阻抗为 ;当Qω2LC且ω2LC1时,上式可近似为 ; 2. 交流电桥式测量电路 设Z1=Z+ΔZ1, Z2=Z-ΔZ2,对于差动式电感传感器, 有ΔZ1+ΔZ2≈jω(ΔL1+ΔL2), 则电桥输出电压为 ;3、变压器式交流电桥 ;六、变磁阻式传感器的应用;它主要由C形弹簧管、 衔铁、 铁芯和线圈等组成。 ;第二节 互感式传感器;输出电压有效值;二、测量电路(相敏检波电路);三、? 误差因素分析 1、激励电压幅值与频率的影响 激励电源电压幅值的波动,会使线圈激励磁场的磁通发生变化,直接影响输出电势。而频率的波动,只要适当地选择频率,其影响不大。 2、温度变化的影响 周围环境温度的变化,引起线圈及导磁体磁导率的变化,从而使线圈磁场发生变化产生温度漂移。当线圈品质因数较低时,影响更为严重,因此,采用恒流源激励比恒压源激励有利。适当提高线圈品质因数并采用差动电桥可以减少温度的影响。 ;3、零点残余电压 当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。但实际上,当使用桥式电路时,在零点仍有一个微小的电压值(从零点几mV到数十mV)存在,称为零点残余电压。如图是扩大了的零点残余电压的输出特性。零点残余电压的存在造成零点附近的不灵敏区;零点残余电压输入放大器内会使放大器末级趋向饱和,影响电路正常工作等。 ;消除零点残余电压方法: 1.从设计和工艺上保证结构对称性 为保证线圈和磁路的对称性,首先,要求提高加工精度,线圈选配成对,采用磁路可调节结构。其次,应选高磁导率、低矫顽力、低剩磁感应的导磁材料。并应经过热处理,消除残余应力,以提高磁性能的均匀性和稳定性。由高次谐波产生的因素可知,磁路工作点应选在磁化曲线的线性段。 2.选用合适的测量线路 ;四、互感式传感器的应用 测量振动、厚度、应变、压力、加速度等各种物理量。 1. 差动变压器式加速度传感器 ; 用于测定振动物体的频率和振幅时其激磁频率必须是振动频率的十倍以上,才能得到精确的测量结果。可测量的振幅为(0.1~5)mm,振动频率为(0~150)Hz。 差动变压器式传感器可以直接用于位移测量,也可以测量与位移有关的任何机械量,如振动、加速度、应变、比重、张力和厚度等。它由悬臂梁和差动变压器构成。测量时,将悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动体相连, 此时传感器作为加速度测量中的惯性元件,它的位移与被测加速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。 ;2. 微压力变送器 将差动变压器和弹性敏感元件(膜片、膜盒和弹簧管等)相结合,可以组成各种形式的压力传感器。;第三节 电涡流式传感器;2、工作原理 ;二、电涡流形成范围; 线圈—导体系统产生的电涡流密度既是线圈与导体间距离x的函数,又是沿线圈半径方向r的函数。当x一定时,电涡流密度J与半径r的关系曲线如图所示。J0为金属导体表面电涡流密度,即电涡流密度最大值。Jr为半径r处的金属导体表面电涡流密度)。由图可知:  ① 电涡流径向形成范围大约在传感器线圈外径ras的1.8~2.5倍范围内,且分布不均匀。 ; 2. 电涡流强度与距离的关系 理论分析和实验都已证明,当x改变时,电涡流密度也发生变化,即电涡流强度随距离x的变化而变化。根据线圈—导体系统的电磁作用, 可以得到金属导体表面的电涡流强度为 ; 以上分析表明:  ① 电涡流强度与距离x呈非线性关系,且随着x/ras的增加而迅速减小。  ② 当利用电涡流式传感器测量位移时,只有在x/ras1(一般取0.

文档评论(0)

170****0532 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8015033021000003

1亿VIP精品文档

相关文档