- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
微波基础之混频器和检波器
微波基础之混频器和检波器混频与检波,均是一种频率变换过程.它在各种微波系统中,特别是在微波接收机中是必不可少的.和低频无线电接收机一样,超外差微波接收机具有较高的灵敏度.它把从天线接收到的已调制的微波信号(调幅、调频或调相)与接收机的本振混频,变换为中频已调波,然后由中频放大器放大,再进行解调,输出调制信号,而直接检波式微波接收机,则将接收到的微波脉冲(或其它形式的调幅波)经检波后直接变换为视频脉冲(或其它形式的调制信号),然后经视频放大器放大输出.它结构简单,但灵敏度低. 微波混频器和检波器还经常应用于微波测试系统中.例如,利用混频器将微波信号变换为较低的频率信号,以便进行相位、衰减和频率参数的测量;在扫频稳幅系统中,均利用检波器进行微波功率的检测,而在这些应用中,由于工作电平较高, 对灵敏度要求不高;但要求工作频带宽. 为了实现混频和检波,必须采用非线性电阻元件。点接触二极管及肖特基势垒二极管由于它们的伏安特性具有非线性的特性,均可作为非线性电阻元件,用于混频和检波。目前应用最广的是肖特基势垒二极管。 下面将分别讨论肖特基二极管、混频器及检波器的工作原理及其结构、性能等. 一、金属—半导体结二极管 点接触二极管和肖特基势垒二极管都是由金属和半导体结构构成的二极管.它们的结构如图7—12所示。点接触二极管是用一根金属丝(钨丝或磷铜丝)压接在半导体表面(锗、硅或砷化镓)而形成的二极管,金属丝的尖端很小,其直径仅几微米,所以叫做点接触二极管.这种二极管可用作混频和检波,直到50年代末,它还是微波领域中常用的半导体器体.60年代初,随着半导体平面工艺的发展,才出现面接触型的金属—半导体二极管,叫做肖特基表面势垒二极管(或简称肖特基势垒二极管),如图7—12(b)所示。这种二极管是在重掺杂的N型半导体衬底( 层)上生长一外延层(N层),在外延层表面利用氧化工艺形成 保护膜,利用光刻技术开一几微米的小孔,再蒸发一层金属膜,并在其上制作电极焊上引线,最后封装而成。 1.金属—半导体结二极管的工作原理 众所周知,金属中的自由电子不可能自由地跑到金属外面,如果要自由电子离开金属就要对它作功,消耗一定的能量,不同的金属所需的能量数值不同,这个能量称为功函数或脱出功。不同的半导体其功函数也不同.考虑金属(例如钼)与N型半导体(例如硅)接触。接触前,金属的脱出功 是体外静止电子能量 与该金属费米能级 之差,即 (7-48) 对于N型半导体,其脱出功 为 (7-49) 如图7—13(a)所示.图中 是金属的导带底, 是半导体的导带底, 是半导体价带顶。接触前,由于金属钼的脱出功比N型半导体的脱出功大,即 .N型硅的费米能级高于钼的费米能级,这种费米能级的差别意味着电子密度分布的不同。当金属和半导体接触后,N型硅中的电子将向钼中扩散,接触面的钼侧带负电,硅侧带正电,形成宽度为d的空间电荷区,在这个区存在的内部电场构成了高度为 的表面势垒。在平衡状态下,两个费米能级处于同一位置,如图7—13(b)所示。 如同PN结二极管工作时一样,当金属—半导体接触面被正向偏置时,外加电场E的方向是由金属指向半导体,与势垒区内部电场 方向相反,因而削弱了势垒区内部电场,使势垒高度和宽度减小,结果是电子从半导体流向金属,外电路中便有正向电流流过。当正向偏压增加时,正向电流将指数增加。当金属—半导体接触面被反向偏置时,外加电场E的方向与内部电场 方向相同,使势垒高度和宽度增加,这时,半导体中能够越过势垒顶部的电子数目几乎减小到零。上面的讨论可以看出,金属—半导体结的性质类似于P-N结的单向导电性,但金属—半导体结与普通P-N结二极管也存在明显的区别,主要在于金属半导体结是多数载流子器件,而P-N结中少数载流子也参与导电,因为少数载流子有一定寿命,迁移率也较低,从而限制了P-N结二极管的高频特性。而金属—半导体结不存在这种限制,因而高频特性好,开关速度快.当工作频率很高时,P-N结中少数载流子的复合跟不上高频周期的变化,在负半周少数载流子将返回原来区域,形成一定的反向电流,使整流作用变坏,更高频率时,甚至起不到整流作用,而金属—半导体结是不存在这些问题的. 2.特性、等效电路和参数 根据上面的讨论和实际的测量,可画出点接触二极管及肖特基势垒二极管的伏安特性,如图7-14(a)所示。从图中曲线可以看出,肖特基管和点接触二极管相比,具有反向击穿电压高及正向电流起始晚的主要特点。 金属—半导体结的伏安特性,可用下式表示: (7-50) 式中 为反向饱和电流;e为电子电荷;k为玻尔兹曼常数;T为绝对温度;V为外加偏压;n为斜率因子,它决定于
文档评论(0)