- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Improved Experimental Results Using Fuzzy Lattice Neurocomputing (FLN) Classifiers
Intl. Conf. on Machine Learning; Models, Technologies and Applications (MLMTA’03) Las Vegas, Nevada, USA, 23-26 June 2003 Improved Experimental Results Using Fuzzy Lattice Neurocomputing (FLN) Classifiers Al Crippsa, V.G. Kaburlasosc, N. Nguyenb, and S.E. Papadakisc a Department of Computer Science acripps@ b Department of Economics and Finance Middle Tennessee State University, Murfreesboro, TN 37132, USA c Department of Industrial Informatics, Division of Computing Systems Technological Educational Institution of Kavala, GR 65404, Greece Abstract — This work shows comparatively the capacity of five Fuzzy Lattice Neurocomputing (FLN) classifiers. The mechanics of the five classifiers are illustrated geometrically on the plane. Both learning and generalization are based on the computation of hyperboxes in space RN. Learning is memory-based, and polynomial O(n3) where n is the number of the training data. The problem of overfitting is ruled out by construction. In addition, a FLN classifier both induces rules from the training data and it is applicable beyond RN, in particular a FLN classifier is applicable in a mathematical lattice data domain hence disparate types of data can be dealt with in principle. Experimental results in three benchmark classification problems involving data sets of various sizes and various types, i.e. numerical/nominal data, compare favorably with the results by alternative classification methods from the literature. Various theoretical advantages are discussed. I. INTRODUCTION This work demonstrates experimentally the effectiveness of five Fuzzy Lattice Neurocomputing (FLN) classifiers in three benchmark classification problems. The aforementioned FLN classifiers include 1) FLN tightest fits (FLNtf), 2) FLN first fit (FLNff), 3) FLN ordered tightest fit (FLNotf), 4) FLN selective fit (FLNsf), and 5) FLN max tightest fit (FLNmtf). Note that FLNtf has been introduced in [10], FLNff, FLNotf,
您可能关注的文档
- High-copper mineral mixture for fattening pigs.pdf
- Highly efficient three-component synthesis of 1H-indazolo[1,2-b]phthalazinetrione derivatives cataly.pdf
- Higher order reduction theorems for general linear connections.pdf
- High-Temperature Strain Sensing for Aerospace Applications.pdf
- Highly-magnified, Multiply-imaged radio counterparts of the Sub-mm Starburst Emission in th.pdf
- Highly dispersed carbon nanotube reinforced cement based materials.pdf
- HIGH-TEMPERATURE STRENGTH OF NIOBIUM ALLOY 5VMTs.pdf
- Historical Accounts.............. 5 Tree Features Influencing.pdf
- Histone_methyltransferase(HMTase)抑制剂_激动剂_MCE.pdf
- Hit-and-Run is Fast and Fun 1.pdf
- Improvements to multiple FGS layers coding for low-delay applications.pdf
- Improvements on the normal mode decomposition method used in harbor resonance.pdf
- Imprinting of Dull Roll Surface Texture to Carbon Steel Strips in Temper Rolling by Dry Condition.pdf
- Improving the Fastnes Peroperty.pdf
- Improved SCS-CN–Inspired Model有用 2012.pdf
- Improving corrosion resistance of magnesium-based.pdf
- Improving TCP throughput in 802.11 WLANs with high delay variability.pdf
- Implicit_Analysis_Results_Plate_0822.ppt
- Improving the Performance of QoS Models in MANETs through Interference Monitoring and Corre.pdf
- Improving the Fault Tolerance of a Computer System with Space-Time Triple Modular Redundanc.pdf
有哪些信誉好的足球投注网站
文档评论(0)