Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis.pdfVIP

Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis

Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis Fatih Porikli Oncel Tuzel Mitsubishi Electric Research Labs, Murray Hill, NJ 07974, USA Abstract We present an automatic, real-time human tracking and ob- servation system. Robustness and speed are the two major bottlenecks of the existing approaches. We improve upon the robustness and speed of the current state-of-art by in- tegrating a mean-shift based model update technique with an adaptive change detection method. We also provide op- timal solutions for several other stages including illumina- tion compensation, skin color detection, shadow removal, morphological filtering, event analysis of a tracking system. In addition, we introduce a novel background refresh mech- anism. Thus, the proposed framework is capable of han- dling shortcomings of template and correspondence based tracking approaches. The results with the ICVS-PETS data sets show the effectiveness of the algorithm. 1. Introduction Accurate object segmentation and tracking under the con- straint of low computational complexity presents a chal- lenge. A typical detection system is built by finding regions in motion, eliminating shadows and noise, constructing and tracking objects in video. Background Subtraction The most common approach for discriminating a moving object from the rest for sta- tionary camera setup is background subtraction. Basically, background detection approaches can be classified as non- adaptive and adaptive methods. Manual selection, pixel- wise voting, and mean value search algorithms are among the non-adaptive methods. Adaptive methods include aver- aging images over time, alpha-blending [5], Kalman filter- ing, Gaussian mixture models (GMM), etc. Although aver- aging and alpha blending are simple and fast, they are not effective for scenes with many moving objects particularly if they move slowly. Besides, they cannot handle multi- modal backgrounds. They recover slowly when an object occupies the scene

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档