Building Emergent Social Networks by Semantic User Preference Clustering.pdfVIP

Building Emergent Social Networks by Semantic User Preference Clustering.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Building Emergent Social Networks by Semantic User Preference Clustering

Building Emergent Social Networks by Semantic User Preference Clustering Iván Cantador, Pablo Castells Escuela Politécnica Superior, Universidad Autónoma de Madrid Campus de Cantoblanco, 28049 Madrid, Spain {ivan.cantador, pablo.castells}@uam.es Abstract. This paper presents a novel approach to automatic semantic social network construction based on semantic user preference clustering. Considering a number of users, each of them with an associated ontology-based profile, we propose a strategy that clusters the concepts of the reference ontology according to user preferences of these concepts, and then determines which clusters are more appropriate to the users. The resultant user clusters can be merged into in- dividual group profiles, automatically defining a semantic social network suit- able for use in collaborative and recommendation environments. 1 Introduction The swift development, spread, and convergence of information and communication technologies and support infrastructures, reaching all aspects of businesses and homes in our everyday lives, is giving rise to new and unforeseen ways of inter-personal con- nection, communication, and collaboration. Virtual communities, computer-supported social networks, and collective interaction are indeed starting to proliferate and grow in increasingly sophisticated ways, opening new opportunities for research on social group analysis, modeling, and exploitation. In this paper we propose a novel approach towards building emerging social networks by analyzing the individual motivations and preferences of users, broken into potentially different areas of personal interest. Finding hidden links between users based on the similarity of their preferences or historic behavior is not a new idea. In fact, this is the essence of the well-known col- laborative recommender systems (e.g. see [12]). However, in typical approaches, the comparison between users is done globally, in such a way that partial, b

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档